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Abstract 

The most pressing question about cognitive brains is how they support the 

compositionality that enables combinatorial manipulations of images, thoughts and 

actions. When addressing this problem with synthetic modeling, the conventional idea 

prevalent in artificial intelligence and cognitive science, generally, is to assume hybrid 

systems and corresponding neural network models, where higher-order cognition is 

realized by means of symbolic representation and lower sensory-motor processes by 

analogue processing. However, the crucial problem with such approaches is that the 

symbols represented at higher order cognitive levels cannot be grounded naturally in 

sensory-motor reality. The former are defined in a discrete space without any metric and 

the latter are defined in a continuous space with a physical metric. These, therefore, 

cannot directly interact with each other, regardless of the interface that is assigned 

between them. The proposal in the current paper is to reconstruct higher-order cognition 

by means of continuous neuro-dynamic systems that can elaborate delicate interactions 

with the sensory-motor level while sharing the same metric space. Our neuro-robotics 

experiments - including language-action associations and the learning of goal-directed 

actions - show that the compositionality necessary for higher-order cognitive tasks can 

be acquired by means of self-organizing dynamic structures, via interactive learning 

between the top-down intentional process of acting on the physical world and the 

bottom-up recognition of perceptual reality. Using robotic simulations, the current paper 

demonstrates that nonlinear dynamic phenomena, such as bifurcations and the chaotic 

dynamics induced by unstable fixed points, could play essential roles in realizing 

higher-order functions. 
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One of the amazing aspects of human brains is that they can generate diverse thoughts, 

images and actions through novel combinations of acquired knowledge and skills. Such 

cognitive competency is expressed well by the principle of compositionality, i.e. the 

meaning of the whole is a function of the meaning of the parts. As described by Gareth 

Evans [1] in regard to language, the principle of compositionality asserts that the 

meaning of a complex expression is determined by the meanings of its constituent 

expressions and the rules used to combine them, to wit, sentences are composed from 

sequences of words combined according to grammatical rules, and can be decomposed 

similarly. This central notion, that the whole can be decomposed into reusable parts (or 

primitives) by following rules, is applicable to other faculties, as well, such as to the 

generation of complex action routines. For example, the motor schemata theory [2] 

proposes that complex goal-directed actions can be decomposed into sequences of 

behavior primitives. Here, behavior primitives are commonly used behavior segments 

or motor programs. 

 From the preceding considerations, a crucial question emerges. How is 

compositionality realized in cognitive brains? Cognitive scientists have considered that 

such compositionality is a product of manipulations of arbitrary shapes of tokens within 

a symbolic system [3]. Because the manipulation of symbols which are, in themselves, 

without any physical dimensions such as weight, length, speed, or force is free from any 

constraints due to these physical dimensions on possible combinations of such symbols, 

a symbol system provided with recursive functionality achieves compositionality with 

an infinite range of possible expressions. However, studies on intelligent (or cognitive) 

robots have revealed that this framework, employing symbolic representation and 

manipulation, encounters problems when symbols are required to be grounded within 

the context of continuous sensory-motor flow [4]. This problem, the famous symbol 

grounding problem [3], [5], becomes crucial for cognitive robots especially when 

inconsistencies appear between what the symbol level represents in the top-down 

pathway and the reality which arises from the sensory-motor level in the bottom-up 

pathway. It is assumed that both levels should participate in attempts to resolve such 

conflicts via cooperative processes. This cooperation entails iterative interactions 

between the two levels through which optimal matching between them is sought 

dynamically. If one level pushes forward a little, the other should pull back elastically 

so that a point of compromise can be found through iterative dynamic interactions. Yet, 

this problem is not so easily solved through conventional hybrid approaches. The 

symbol systems defined in a discrete space are too rigid to afford such delicate 

interactions with the sensory-motor system. Moreover, this problem cannot be resolved 
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by simply implementing arbitrary interfaces between the two systems, because they 

simply do not share the same metric space for the interactions. 

 Confronted with these difficulties, it may be fruitful  to inquire into how this 

problem is understood, and possibly solved, in terms of human brains. Specifically, we 

would like to know how neuronal structures enabling compositionality in the 

higher-order cognition level develop in human brains. With such information, we might 

better understand how such structures can remain adequately grounded in ongoing 

perceptual input. However, it is fair to say that these mechanisms are not yet exactly 

understood. Significant evidence has accumulated, nevertheless, for a convergent 

understanding that the prefrontal cortex is involved in compositionality due to its 

executive control of other parts of the brain [6]-[8]. Joachim Fuster writes in his 

textbook [8] that executive function is the ability to organize a sequence of actions 

toward a goal, an operation requiring compositionality as described previously. Another 

aspect of compositionality within human brains for which there is some evidence is that 

they utilize hierarchy in complex information processing. For instance, the visual 

recognition of complex objects is performed hierarchically, beginning with V1 and V2 

for simple feature detection, and proceeding to the inferotemporal cortex for the 

integration of those features into more complex compositions [9], [10]. Evidence also 

suggests that complex actions are generated similarly, by means of an organizing 

hierarchy [11], the general understanding of which proceeds as follows. The prefrontal 

cortex sits on the top of the action hierarchy and generates an abstract goal-directed 

action plan. The next level in the hierarchy is composed of the supplementary motor 

area (SMA) and the premotor cortex (PC). These are thought to be responsible for 

generating motor programs for voluntary actions and sensory-guided actions, 

respectively. These areas then send signals to the next lower level, the primary motor 

cortex (M1), where it is believed that primitive motor patterns are generated. M1 then 

passes patterned motor signals further downward via the pons and cerebellum to the 

spinal cord, which then sends out detailed motor commands to corresponding muscles, 

finally initiating physical movements. That said, it must be noted that the complex 

action generating hierarchy in the human brain is not so simple. Other parts of the 

human brain are also involved in the generation of complex actions. In particular studies 

on apraxia caused by cerebral hemorrhage have suggested that the inferior parietal lobe 

(IPL) is crucial for generating skilled actions like tool usage [12], [13]. This is because 

skilled actions, such as manipulating an object as a tool, require motor related 

multimodal sensory feedback, and this visuo-tactile-proprioceptive integration is 

developed in the IPL through dense interactions between the frontal and the parietal 
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lobes [14]. 

 Considering the evidence that human brains achieve compositionality through a 

functional hierarchy embedded in neuronal networks connecting different local regions, 

our original question returns: How exactly is compositionality realized at the neural 

circuit level? Specifically, we may ask: Do some neuronal circuits behave as if  symbols 

were represented and manipulated, as digital computers do? Some may argue that the 

discovery of "grandmother cells" [15] suggests something like symbolic representation 

in neuronal circuits. However, the evidence does not wholly support such an argument. 

Some cells do appear to demonstrate quite narrow response selectivity as if activated 

only by a particular perceptual stimulus, such as one's grandmotherôs face. However, 

when tested with diverse visual stimuli [16], it has been found that these same cells can 

also be activated by other types of visual images. Rather than each item being discretely 

represented by a corresponding cell, meanings and concepts are more likely encoded in 

distributed activities of neuronal ensembles. And, if such a distributed representation is 

the reality in biological brains, how can we imagine compositionality being realized by 

them? 

 In pursuing this question, the current paper presumes the following model and 

from this basis makes two central hypotheses. The model, on one hand, presumes a 

top-down intentional pathway by which compositional images and plans for acting in 

and on the world are proactively generated under particular intentional states. On the 

other hand, the model presumes a bottom-up pathway which is responsible for 

recognition of the continuously updated perceptual reality. The core hypothesis is that 

compositionality develops by means of the self-organization of a particular class of 

dynamic structures. These structures provide for dense interactions between the 

aforementioned two pathways, both during the course of consolidative learning of 

perceptual experience and through diverse intentional interactions of the agent with the 

outer world. It is further speculated that compositionality developed in such 

neuro-dynamic systems can be naturally grounded in sensory-motor reality. These 

hypotheses are examined via synthetic modeling studies accompanied by robotics 

experiments. The robotics experiments include learning of compositional action 

generation and associative learning of proto-language and corresponding actions. 

Although these synthetic modeling studies may not be able to prove the biological 

reality of the proposed hypotheses, it can provide proof of principle for "brain-like" 

realization of cognitive competence in artifacts, i.e. cognitive robots. The next section 

describes the basic framework that underlies all subsequent demonstrations. 
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II. Basic Frameworks of the Models 

This section describes how the top-down proactive intentional processes and the 

bottom-up recognition processes could be realized in a particular neuro-dynamic system, 

and how these two processes can interact densely in the course of learning as well as in 

generating compositional actions. Furthermore, it describes how the model can be 

extended to produce a functional hierarchy for action generation. 

 

A. Learning to Predict/Recognize Perceptual Sequences 

Tani and colleagues [17]-[19] have shown that learning, generating, and recognizing 

sensory-motor patterns can be accomplished by extending conventional RNN models, in 

terms of prediction error minimization within a particular dynamic neural network 

model, a recurrent neural network with parametric biases (RNNPB), [20], [21]. The 

dynamics of the model can be described by a difference equation (1): 

 

ὣ ȟὢ Æὣȟὢȟὡȟ‚  (1) 

 

where ὢ is the current internal neural state, 7 is a set of learnable parameters such 

as connectivity weights and biases, ʊ is the intention state, and ὣ is the perceptual 

state which is an observable state. This equation represents the top-down intentional 

process where ὣ  (the perceptual state at the next time step for a given intentional 

state ʊ) is predicted by means of the dynamic mapping from the current internal state 

ὢ and the current perceptual state ὣ. This mapping is parameterized by W which is 

acquired through the learning process described later. This forward dynamics model can 

be regarded as a generative model with the intentional state being key to regenerate the 

corresponding perceptual sequence that is learned. Fig. 1(a) illustrates how this idea can 

be realized in the RNNPB model where the PB units in the input layer represent the 

intentional state in question. It is noted that ὢ is the initial internal state, set with a 

neutral value as in the case of learning described next. 
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Fig.1. RNNPB model, (a) Perceptual sequences for given intentional states are 

predicted, (b) Target perceptual sequences are learned by inferring optimal 

connectivity weights and intentional states by means of prediction error minimization 

where red arrows denote error signal back-propagation, (c) intentional states for 

given perceptual sequences are inversely computed by means of prediction error 

minimization.  

 

The system predicts perceptual sequences to be caused by the intentional state either in 

an open loop mode or in a closed loop mode. In the open loop mode, an actual 

movement is made by generating the one-step prediction of the next perceptual state 

through the use of the current one. In the closed loop mode, a look-ahead prediction of 

multiple steps of a perceptual sequence is generated by feeding back the predicted 

perceptual state from the previous step to the current inputs. This process can generate a 

motor imagery sequence evolving in correspondence with a specific intentional state. 

Although the RNNPB model employs a hidden units layer between the input and the 

output layers, these are not shown in Fig. 1. 

 Next, the learning process is described. The learning of a set of intentional 

actions in a supervised manner is formulated as the process of minimizing the prediction 

error between the teaching target perceptual sequence ὣ and its prediction ὣ in (1). 

This is accomplished by searching for the optimal values of the learnable parameters W 

common to all target actions to be learned as well as for the corresponding intentional 

state ʊ for each action (see Fig.1 b), and is implemented by utilizing the error 

back-propagation through time (BPTT) algorithm [22]. In the learning process, the 

top-down prediction of a perceptual sequence is unfolded in time with a particular 

intentional state given as the input. Then, when compared to the target perceptual 

sequence, an error signal is generated and back-propagated through the internal state 

loop to the intention state. Thus, through bottom-up recognition, the connectivity 
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weights and the intentional states are gradually updated. In fact, through iterations of 

this learning process, dense interaction between the top-down and the bottom-up 

processes is facilitated, and in this way projected perceptual images originating from the 

intentional state can be shaped by and grounded in the reality of the ñobjective worldò. 

 Finally, the process of recognizing a target perceptual sequence can be 

formulated as a process of searching for an optimal intentional state by which the target 

sequence can be generated with a minimum error while the learned weight parameters 

W remain fixed (see Fig. 1 (c)). The aforementioned model is formally related to the 

idea of predictive coding as developed by Rao and Ballard [23]. It also bears formal 

similarity with that of active inference for which Friston [24] has recently demonstrated 

a generalized framework under the name of free-energy minimization. In the model by 

Friston [24], the prediction of a subsequent perceptual state is accomplished by means 

of approximate Bayesian inference through the estimation of both mean and variance. 

 

B. Functional Hierarchy 

On the computational view, compositionality requires some hierarchical operations 

involving the manipulation of a set of elements in a lower level through the application 

of particular rules from a higher level. This is analogous to storing and retrieving 

behavior primitives, or words, in the lower level and combining them into goal-directed 

actions or sentences by following scenarios or plans from the higher level. How can 

dynamic neural network models represent such mechanisms? One possible way is to 

consider a cascade of aforementioned RNNPB models operating according to different 

timescales [18]. Such a model, operative on two levels, can be described as (2):  

 

   
ὣ ȟὢ Ὢ ὣȟὢȟὡ ȟ ‚ 

‚ ȟὢ Ὢ ‚ȟὢȟὡ ȟ‚
  (2) 

 

Here, t denotes time on the faster timescale with a smaller ɝÔ for each time step in the 

lower level, and T denotes time on the slower timescale with a larger ɝÔ in the higher 

level, while l and h denote suffixes for the lower level and the higher level, respectively. 

The main idea is that ‚ in the lower-level dynamic function works as a slowly 

changing parameter for Ὢ which is predicted as ‚  by the higher-level dynamic 

system operating in the slower timescale (see Fig. 2 (a)).  
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Fig.2. Hierarchically-organized RNNPB model. (a) A perceptual sequence is 

predicted for intentional states given in the higher level. (b) Target perceptual 

sequences are either learned or recognized by inferring both connectivity weights and 

intentional states, or the intentional states only, where red arrows denote the error 

signal back-propagated from the lower level to the higher level. 

 

The prediction of ‚  is generated as corresponding to the higher-level intentional 

state ‚. This is an important aspect of the implicit generative model, due to the 

fundamental role played by the separation of temporal scales. This separation enables 

higher-level dynamics to contextualize (through the provision of parametric biases) 

faster fluctuations at lower levels, and recapitulates the causal structure of the 

(hierarchical) world that the agent is trying to predict. In sum, a functional hierarchy is 

achieved by means of an ñabstractò low-dimensional parametric control over the 

lower-level dynamic function by the higher-level one. In the learning process, the delta 

error signal is back-propagated from the lower level to the higher one by being passed 

from ‚ to ‚ and finally to the higher-level intentional state ‚ whereby parameters 

ὡ  and ὡ  as well as ‚ are updated in the direction of minimizing error (Fig. 2 

(b)). A target perceptual sequence can be recognized simply by updating  ‚ by 
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utilizing the delta error delivered from the prediction error for the perceptual inputs. 

 The aforementioned hierarchical model can be improved, further, by 

considering that perceptual sequence patterns are experienced as continuous flow rather 

than as discrete events, and by adjusting the model to operate in continuous time 

accordingly. For this purpose, consider a continuous time recurrent neural network 

model (CTRNN) [25], [26] consisting of sub-networks the dynamics of which are 

characterized by the different values of time constants assigned. Such a model is 

referred to as a multiple timescales recurrent neural network (MTRNN) [27], [28] in 

which the forward dynamics of each neural unit is described as (3):  

 

ừ
Ử
Ừ

Ử
ứ†ό ό Вύ ὥ   В ύ Ὅ

ώ  
 

В  ᶰ
ȟὭὪ Ὥɴ ὕόὸ 

ὥ ȟ   έὸὬὩὶύὭίὩ

       (3) 

 

where †, ό, ώ, ὥ and ὦ are the time constant, the membrane potential, the neural 

activation state for an output unit and for an internal (context) unit, and the bias of the 

ith unit, respectively. It is important to note, here, that the activation of output units 

follows a softmax function with ό as the potential value at the ith cell within OutN 

cells, while the activation of internal units follows a standard sigmoidal function. This 

treatment is stipulated in order to make the output patterns activate only sparsely, i.e. 

the summation of OutN output units becomes 1.0. Ὅ is the kth input, and ύ  is the 

connectivity weight from the jth unit to the ith unit. When the time constant † is set at 

a larger value, the activation dynamics of the unit tend to be slower. Conversely, with a 

smaller value, they become faster. If the whole network is built as a cascade of 

sub-networks, with the higher-level network consisting of dynamic units with a larger 

time constant, and with the lower-level network with a smaller time constant as 

illustrated in Fig. 3, a functional hierarchy similar to the one described for the RNNPB 

with discrete time emerges.  
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Fig. 3 MTRNN model with top-down perception prediction according to a given 

intentional state on the left-hand side, and with bottom-up perception recognition and 

learning on the right-hand side. 

 

On the top-down pathway, the intentional state in the higher-level network is set with 

particular values for initial states in some neural units, the so-called "intention" units, 

and slowly changing neural activities in this higher-level network are initiated. This 

slowly changing activity affects the faster dynamics of the lower-level network by 

means of parameter modulation and bifurcation, resulting in the modulation of and 

shifting in sequence patterns predicted by, and generated in, the output units. In the 

learning process, the error generated in the comparison of the target sequence and the 

prediction sequence back-propagates through time to the initial states of the intention 

units in the higher-level network by going through all connectivity weights in the whole 

network, whereby all of the connectivity weights as well as the initial states for each 

target sequence are updated. 

 Through the iterative interactions between top-down prediction and bottom-up 

error regression, which the whole network undergoes at all levels in a distributed and 

parallel manner, it is almost inevitable that an adequate functional hierarchy between 

multiple levels with different timescales can and will self-organize. The exact learning 

mechanism incorporates a modified BPTT scheme which considers the effects of each 

time constant assigned to each dynamic unit in MTRNN [27]-[29]. Consider E as a 

summation of prediction errors for all output units and for all time steps, and which is to 
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be minimized through the learning process. E is represented in terms of Kullbackï

Leibler divergence as:  

%  ВВ ώȟ
ᶻ

ᶰ  ὰέὫȟ
ᶻ

ȟ
     (4) 

where ώȟ
ᶻ and ώȟ are the target output and output for the ith output unit at time step t, 

respectively. Each connectivity weight ύ  is updated in a direction opposite to that of 

the gradient Ћ%ȾЋύ  as: 

ύ ὲ ρ  ύ ὲ ‌  (5) 

where ɻ is the learning rate and n is an index representing the iteration step in the 

learning process. Then,  is given by: 

 В
ȟ
 ὥȟ  (6) 

and the delta error at the ith unit 
ȟ
 is recursively calculated from the following 

formula: 

ȟ
 

ώȟ  ώȟ
ᶻ ρ

ȟ
                        Ὥɴ ὕόὸ

В
ȟ
‏  ρ   ύ Ὢᴂόȟ       Ὥɵ ὕόὸᶰ

 (7) 

where Æᴂ is the derivative of the sigmoid output function and ‏  is Kronecker delta 

function. By looking at the second line of (7) it can be seen that the ith unit in the 

current step t inherits a large portion ρ  of the delta error 
ȟ
 from the same 

unit in the next step t+1 when its time constant † is relatively large. It is noted that (7) 

turns out to be the conventional, discrete time version of BPTT with † set as 1.0. This 

means that, in a slow dynamic network with a large time constant, error 

back-propagates through time with a small decay rate. This enables learning of 

long-term correlations latent in the target time profiles by filtering out fast changes in 

the profiles. In addition, an optimal initial state of the intention unit can be searched for 

by updating the membrane potential state όȟ and by utilizing the delta error 

back-propagated through time to the unit of the 0
th 

step as: 

όȟ ὲ ρ  όȟ ὲ ‌
ȟ
    (8) 

 In summary, the preceding describes a generic scheme based on the 

hierarchical composition of (autonomous) dynamical systems that serve as a generative 
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model of both exteroceptive and proprioceptive inputs. The deep hierarchical structure, 

and the separation of temporal scales described in this model (through descending 

parametric biases), enable the agent to predict and to learn, informed as it is by the 

sensorimotor contingencies entailed in its environment (and its motor plant). Crucially, 

on this point, all levels of the model rest upon continuous dynamics - where symbolic 

representation is implicit in the (unstable) fixed points of the dynamical system. A 

second key aspect of this framework is that there are no explicit sensory response links. 

These are acquired through descending predictions of sensory observations in both the 

visual and motor domain. This means that sensorimotor constructs are represented as 

amodal dynamics at the top of the hierarchy (with protracted timescales), providing 

bilateral corollary discharges or predictions about the state of the world and the motor 

plant. In what follows, we will use this scheme in a number of experimental contexts to 

show how it accounts for the learning of motor primitives, imitative behavior, and for 

the generation of spontaneous yet deterministic behavior, all through the use of 

(entrained) chaotic dynamics. 

 

III. Neuro -Robotics Experiments 

This section describes robotics experiments utilizing the aforementioned dynamic 

neural network models in the examination of how an agent may develop the capacity to 

compose complex cognitive behaviors while remaining grounded in sensory-motor 

reality. These robotics experiments explore research topics including (a) dynamic shifts 

of action intentions via recognition of situational changes in the environment, (b) the 

development of compositional concepts via associative learning between proto-language 

and behaviors, (c) the tutoring of complex skilled actions, and (d) the spontaneous 

generation of combinatorial action sequences. Further, analysis of the dynamical 

structures self-organized in the models under consideration will also shed light on 

essential neuro-dynamic mechanisms underlying compositionality in human-level 

cognition. 

 

A. Dynamic Shifts of Action Intentions via Bottom-Up and Top-Down Interactions 

The following robotics experiments, utilizing the RNNPB model described earlier, 

examine how the top-down intention to act on the physical environment can be 

dynamically adapted by the bottom-up recognition of perceptual reality according to 

situational changes in the environment (for further details, see [30]). In the current task, 

a small humanoid robot made by the Sony Corporation learned to generate ball ñplayingò 

behaviors under human tutoring. The human tutor manually guided the robotôs 
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movements, helping it to manipulate a ball by grasping its arms, while the robot 

perceived sequences of two types, visual and proprioception. The robot's visual 

perception St took the form of the 3-dimensional relative position of the ball on the task 

table as measured by color tracking, and the proprioception Mt of the bimanual arms and 

hands was represented by 8 DOFs of the corresponding joint angles. After repeated 

training, the robot was able to predict the visuo-proprioceptive state of the next step in 

an action sequence. The actual movement of the robot arms was generated by sending 

the prediction, the next target values, of the next proprioceptive step in terms of 8 DOFs 

of joint angles to the motor controllers of the arms. The robot was trained for two types 

of ball play. "Play-1" consisted in rolling the ball from the left-hand side to the 

right-hand side, and vice-versa, repeatedly by gently pushing it with both hands. 

"Play-2" consisted in repeatedly grasping the ball in the middle position, lift ing it up, 

and then dropping it. By following the scheme shown in Fig. 1(b), training of the 

RNNPB was conducted where the visuo-proprioceptive sequences Ὓȟὓ  obtained 

during the tutoring sessions was utilized as target training sequences. The training data 

consisted of 6 cycles of sequences both for play-1 and play-2. Note that the objective of 

the training was to make the network regenerate two types of target 

visuo-proprioceptive sequences depending on the intention states (the PB values) which 

had been self-determined through the training process. We employed an RNNPB that 

has 11 input units and 11 prediction output units. It also has two PB units, 50 hidden 

units, and 70 context units representing the internal state ὢ. The learning was iterated 

for 50,000 epochs, starting from an initial random set of synaptic weights. The final 

root-mean-square error of the output units became less than 0.0003. It was assured that 

a different PB vector value was determined for each type of play. 

 After the training, the robotôs behavior generation for the learned types of 

ball-play was tested by following a scheme of online generation and recognition. The 

robot's movements were generated by feeding the next-step predictions of 

proprioceptive states (the joint angles of bimanual arms and hands) to the position 

controller of the robot, and the PB vector was updated by means of on-line recognition 

of visual perception (the perception of ball position). For the online recognition process 

(PB regression utilizing the prediction error), 50 instances of forward and 

back-propagation were conducted using a 30-step window on the immediate past in 

order to determine the PB at each next time step. This repeated behavior generation 

experiment showed that, although the robot tended to stably generate one of the learned 

types of ball play, the type of play switched from one to the other intermittently. Fig. 4 

shows a sequence of photo snaps and the corresponding plots of time evolution of 
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parameters during this particular behavior generation.  

 

 

 

Fig. 4 Autonomous behavioral switching from órolling ballô to ógrasping and 

dropping ballô in the Sony humanoid robot QRIO. (a) The corresponding photo snap 

sequence. (b) Time profiles for the predicted ball position (X, Y, Z) in vision, its actual 

perception, predicted joint angles (a representative joint angle for each arm), and the 

PB vector (PB1, PB2). 

 

In Fig. 4(a) it can be seen that behavior switching takes place in the ninth photo snap. 

Fig. 4(b) shows time profiles for the predicted ball position, its actual perception, 

predicted joint angles (representing two out of a total of eight DOFs), and the 

two-dimensional PB vector. From the time profiles of the ball position and the joint 

angles, it can be seen that behavior switching took place between 200 and 350 steps and 

that it was associated with a shift in the PB vector. The behavior switching was initiated 

by a small fluctuation in ball positioning during ñrolling ballò play at around the 180
th
 

time step when the ball came slightly more toward the center than was predicted in the 
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case of pushing the ball from the right side. The resultant prediction error caused 

gradual modulation of the PB vector toward the value for ñgrasping the ball located at 

the centerò which caused the arm to gradually push the ball toward the center more. 

Finally, play-2 of ñgrasping the ball in the center position and dropping itò was initiated 

by achieving a perfect match between the perceived ball position and the one predicted 

by the modulated PB value. Here, we can see how intention can be dynamically 

modulated through the bottom-up recognition of the perceptual reality by utilizing the 

error regression scheme. 

 

B. Associative Learning Between Proto-Language and Behaviors 

The faculty for language and the faculties for other types of action have been treated 

independently in conventional neuroscience. Recently, however, some researchers have 

been looking at these functions utilizing various brain imaging techniques, including 

fMRI, PET and EEG, and this research has begun to suggest a certain dependency 

between them. Hauk et al [31] showed in a functional MRI experiment that reading 

action related words with different end effectors, e.g. ñLickò, ñPickò and ñKickò, evoke 

neural activities in motor areas corresponding with the local areas responsible for 

generating motor movements in the face, arm and leg, respectively. This result, as well 

as that reported in [32], suggest that understanding words or sentences related to actions 

may require the presence of specific motor circuits responsible for generating those 

actions, and therefore the parts of the brain responsible for language use and other forms 

of action might be interdependent. Pulvemuller [33] argues that, if everyday experiences 

of speech and corresponding sensory-motor signals tend to overlap during infant 

development, synaptic connectivity between the two circuits can be reinforced through 

Hebbian learning. This suggests a possibility that meaning and concepts of words and 

sentences are acquired as associations with related sensory-motor experiences, as 

discussed in the usage-based approach by Tomasello [34], i.e. cognitive linguistics.  

 The robotics experiment described in this section explores this possibility, that 

the so-called ñsemantically combinatorial language of thoughtò as mentioned by Fodor 

and Pylyshyn [35] can be developed in terms of neuro-dynamic structures provided that 

dense interactions are allowed between linguistic processes and behavioral ones. In this 

robotics experiment, we examined how a set of simple sentences consisting of verbs and 

object nouns can be understood, and the corresponding actions produced, by robots 

utilizing an extended RNNPB model [36]. The model consists of a linguistic RNNPB 

and a behavioral RNNPB interconnected through PB units.  
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Fig. 5. A linguistic RNNPB predicting word sequences and a behavioral RNNPB 

predicting sensory-motor sequences, interconnected by PB units, where the PB vector 

of each RNNPB is updated by utilizing its own error signal while minimizing the 

difference between two. 

 

The central idea behind the model was that the PB activation vectors in both modules 

should be bound in order to become identical for generating pairs of corresponding 

linguistic and behavioral sequences via learning (see Fig. 5). In other words, stimulus 

response links are not formed by simply associating, or mapping, between words and 

actions, but by constructing amodal, high level, dynamical representations that are both 

sensory and motor in nature. In what follows, we will show that this representational 

space embodies the fundamental distinction between the different actions that can be 

undertaken and the objects that are the targets of those actions. More specifically, in the 

course of the bound learning of pairs of linguistic and behavioral sequences, the PB 

activation vectors in both modules were updated in the direction of minimizing their 

differences as well as in the direction of minimizing the prediction error in either 

modality, alone. By passing the error signals back-propagated from both modules to the 

shared PB units, a sort of unified representation between the two modalities could be 

formed through the self-organization of the PB activations. After the learning converged 

for all of the pairs, the capacity to understand sentences was tested as follows. A 

particular word sequence was shown to the linguistic module as a target to be 

recognized by the PB regression scheme. Then, the PB value obtained as the result of 

regenerating the word sequence with the minimum error was used to activate the 
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behavioral RNNPB in order to generate a prediction of the corresponding perceptual 

sequence responsible for generating that particular robot behavior. Here, a tempting 

expectation was that compositionality hidden in the perceived data of the linguistic 

modality and behavioral modality could be captured in the internal neuro-dynamic 

structures shared by these two modalities via consolidative learning accompanied by the 

top-down and the bottom-up interactions. This hypothesis was evaluated through 

experiments utilizing a physically mobile robot. 

 A mobile robot equipped with a camera and one DOF arm was placed in a 

workspace where red, blue and green objects were always located to the left, center, and 

right of the robot, respectively (Fig. 6(a)).  

 

 

Fig. 6. The mobile robot with video camera and arm used in the experiment for 

proto-language and behavior association learning. (a) The robot is facing red, blue 

and green objects at its home position. (b) An example of a behavioral trajectory for 

hitting the red object. 

 

We considered a set of imperative sentences consisting of 3 verbs (point, push, hit) and 

6 object nouns (left, center, right, red, blue, green). In these sentences, ñpoint blueò 

indicated that the robot had to point to the blue object by extending its arm, ñpush redò 

indicated that the robot had to move to the red object and push it with its body, and ñhit 

leftò indicated that the robot had to move to the object to its left and hit that object with 

its arm. Note that ñredò and ñleftò were synonymous in the employed workspace setting, 

as were ñblueò and ñcenterò and ñgreenò and ñrightò. For each given combination of 

verb and noun, corresponding actions in terms of perceptual sequences consisting of 

more than 100 steps for each trial were tutored by guiding the robot with a remote 
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controller, while slight variances in object positions as well as in the robot's starting 

positions were introduced during each trial of tutoring. Such tutoring was repeated three 

times for each imperative sentence. For the purpose of investigating the capacity to 

generalize the learning, only 14 out of 18 possible sentences were trained and also 

bound to the corresponding behavioral sequences tutored. The remaining 4 behavioral 

sequences were trained without being bound to the linguistic sentences. The behavioral 

RNNPB received 26-dimensional multimodal perceptual inputs and it output their 

prediction for each next step. The multimodal perceptions included 21 feature values for 

encoding visual images, along with 2 measured torque values (an average torque value 

of both wheels, and a torque value of the arm), the velocities of the two motor wheels 

and a joint angle for the one DOF arm as proprioception. The behavioral RNNPB had 

70 hidden units, 4 context units and 6 PB units. The linguistic RNNPB received a single 

word at each step which was encoded by 10 input units (each unit uniquely represents a 

single world out of 9 words and a starting symbol) and output a prediction of the next 

word as encoded in 9 output units in the same manner. This RNNPB had 50 hidden 

units, 4 context units and 6 PB units. It must be noted that time-step processing by the 

forward dynamics of these two RNNPB modules was not necessarily synchronous, as 

the learning of both modules was conducted off-line and behavior generation was 

preceded by the recognition of imperative sentences.  

 The learning process converged with a root mean square error of 0.0091 for the 

linguistic module and 0.025 for the behavior module after 50000 epochs of iterative 

training of the whole network. In the succeeding behavior generation test, it was found 

that the robot could generate correct actions for all 18 sentences. Crucially, these 

included the four untrained sentences. In other words, the agent was able to generalize 

the abstract and cognitive structure of its world as evident in its responses to novel 

contexts. An example of a ñhit redò trajectory generated by the robot is shown in Fig. 

6(b). It was also found that the robot could generate the corresponding behaviors quite 

robustly against miscellaneous perturbations. For example, in the cases of "hitting" or 

"pushing" object behaviors, the robot could continue to track the target object even after 

the object was slightly moved while approaching. A such example movie can be seen in 

video 1 in the on-line supplementary material provided in [37]. We examined how each 

sentence was mapped to the PB vector space. Fig. 7 shows this sentence mapping to the 

PB space with its two principal components.  
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Fig. 7. The observed mapping of 18 imperative sentences into the PB space 

constructed by its 1
st
 and 2

nd
 principal components. The four PB points surrounded by 

dotted circles represent PB values for untrained sentences. 

 

Observe that the mapping appears with a 2-dimensional grid structure with one 

dimension for verbs and the other for nouns, where all sentences with the same verbs 

followed by synonymous nouns appeared close in the space. It is noted that even 

sentences of the unlearned combinations, ñpush red|leftò and ñpoint green|rightò were 

mapped to adequate positions in the grid (indicated by dotted circles). And, following 

further experiments, it appears that these untrained sentences were recognized correctly 

because their meanings became inferable due to structural relations with learned ones. 

The same experiment was repeated 3 times, each time introducing different sets of 4 

unbound sentences. We found that the same generalization was attained by the trained 

network model in every case where a similar two-dimensional grid structure was formed 

in the PB mapping. However, it was also observed that this generalization was lost 

when more than four sentences were removed from the bound learning. These results 

imply that meanings could be acquired as a relational structure among many of the 

sentences, and that such structures can be developed in the distributed activation 
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patterns of neural units as the result of the generalization of learning if an only if a 

sufficient number of exemplars is provided. 

 

C. Learning Compositional Actions via Self-Organization of Functional Hierarchy 

This robotics experiment examined how a functional hierarchy can be developed in the 

course of learning complex actions dealing with object manipulation by utilizing the 

previously described MTRNN model. As mentioned in the introductory section, it is 

generally considered that complex, goal-directed actions can be generated by combining 

reusable primitives. A difficult question arises, however, concerning how behavior 

primitives can be extracted from direct experience and then be stored in the memory 

pool, when the perceptual sequence itself is naively experienced as unarticulated flow, 

without explicit cues guiding segmentation into those behavior primitives. Another 

question, related to this one, concerns how those primitives, once stored in memory, can 

be recombined to generate smooth and continuous patterns of behavior, complex yet 

fluid operations which Luria [38] metaphorically refers to as "kinetic melodies." The 

central problem here is that cognitive competency for compositional action generation 

seems to require two incompatible aspects. On the one hand, there appear to be 

algebraic operations on behavior primitives treated as if they were discrete, concrete 

objects, and on the other hand there is the fluid and context sensitive concatenation of 

one primitive with another matching the delicate flow of perceptual experience. The 

following humanoid robotics experiment focused on this issue. 

 The experiment was conducted with the Sony humanoid robot platform 

utilizing the MTRNN architecture shown in Fig. 8 [27].  
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Fig. 8. The MTRNN architecture utilized in humanoid robot experiments examining 

object manipulation. 

 

By implementing a color-based object-tracking camera on the robot's head, 

two-dimensional camera head angles targeting a red colored object represented the 

visually perceived object position ὠ. Eight-dimensional joint angles in bimanual arms 

represented the proprioceptive state ὖ. The visual state ὺ and the proprioception ά  

were mapped to softmax activation patterns of 36 cells for visual state ὺ and 64 cells 

for proprioceptive state ὴ by utilizing corresponding topology-preserving maps 

implemented in Kohonen networks [39]. The current visual state ὺ and proprioceptive 

state ὴ were fed into the input units of vision and the proprioception input-output 

networks, respectively, in order to predict its state at each next time step in the output 

units. The whole MTRNN architecture consisted of a higher-level network containing 
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20 slow context units († χπ, a lower-level network containing 30 fast context units 

(† υ), the vision input-output network containing 36 units († ς) and the 

proprioception input-output network containing 64 input-output units († ς). Two 

slow context units in the higher-level network were assigned to represent intentional 

states in terms of the initial states. The units within each network, the higher-level 

network and the lower-level network, were fully interconnected, as were the units 

within both the vision and proprioception networks. However, neither were the units in 

the higher-level network connected directly with the units in the input-output network, 

nor were the units in the vision network connected directly with the units in the 

proprioception network. Our assumption was that this kind of constraint on the network 

connectivity would allow for the development of information bottlenecks and hubs in 

the lower-level network. Starting with a particular initial state (representing intention), 

and following the forward dynamics of the whole network, the network predicted the 

vision state and the proprioceptive state of each next time step by receiving the values 

from the current time step from the corresponding perception channels. The prediction 

of the proprioception state at each next time step was sent to the PID controller of the 

robot in order to generate the appropriate motor command for each joint motor to 

achieve the predicted posture of the robot at that next time step.   

 The robot was trained to generate five different task behaviors with an object 

under the physical guidance of a human tutor as described in previous experiments. The 

goal of each task behavior was to generate a different sequence of behavior primitives in 

order to manipulate the object in different ways, such as reaching for the object, moving 

the object up and down (UD), left and right (LR) and forward and backward (FB) a 

specific number of repetitions. There was one behavior primitive, clapping hands (CL), 

which did not involve with the object. All five task behaviors started from the home 

position and ended by returning to that same position (see Fig. 9).  
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Fig. 9. A humanoid robot made by Sony is trained for five behavioral tasks, each of 

which is composed of a sequence of behavior primitives.  

 

The tutor taught the robot each of these task behaviors, changing the object position five 

times (2cm each) between the left end and the right end in the task table, except for task 

5 which did not contain object-related behavior. It is important to note, here, that no 

explicit cues were provided for the segmentation of the tutored visuo-proprioceptive 

sequences into behavior primitives. 

 Training of the MTRNN was completed with 5000 iterations of BPTT for each 

of the tutored sequences. This resulted in a root mean square error of 0.009. The robot's 

performance was tested for all five task behaviors by changing the initial object position 

five times within the trained range. It was shown that the robot performed all task 

behaviors successfully. Here, "success" means that the robot could generate specific 

patterns within specific ranges of movement amplitudes for UD, LR, FB and CL, for a 

specific number of repetitions, without dropping the object (for more details, see [27].) 

It is important to note, also, that this same learning experiment was repeated five times, 

in each case with similar results obtained with near perfect behavior regenerations. The 

robot failed in only one trial out of 25 trials by dropping the object while grasping it. 

 Fig. 10 illustrates representative task regenerations, showing the development 

over time of essential system variables, with task-2 and task-5 represented in the 
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left-hand and right-hand columns, respectively.  

 
 

Fig. 10. Examples of teaching patterns and generated patterns for task-2 and task-5. 

Proprioception and vision trajectories during teaching (in the first and the second 

rows) and during generation (in the third and the forth rows) are shown. The 

activation patterns for 60 fast context units and for 20 slow context units are shown in 

the 6
th

 and 7
th

 rows, respectively. 

 

Each plot shows target signals for the four representative dimensions of proprioception 

and two-dimensional visual information for object position during tutoring, with 

corresponding generated outputs, and with the activations of 60 fast context units and 

20 slow context units in grey-scale representation. Looking at the activation dynamics 

of the fast context units in the lower network, it is clear that their dynamics were 

correlated with visuo-proprioceptive trajectories. On the other hand, the activation 

patterns in the slow context units changed much more slowly. From this observation, a 

hypothesis can be drawn, that a sequence of primitive patterns, embedded in the lower 

sub-network and characterized by fast dynamics, was learned in the higher sub-network 
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and characterized by slow dynamics. 

 According to this hypothesis and assumed functional roles of the slow and fast 

dynamics in the model network, one would anticipate that novel combinations of 

primitives would be generated only by modulating the activity of the slow context units. 

In order to test this idea, the network was retrained to generate additional, novel 

behavior sequences, which were to be assembled from new combinations of 

prior-learned primitives. Most importantly, during this additional training, only the 

connectivity weights in the higher network were allowed to change, not the ones in the 

lower and the input-output networks. The additional training consisted of two additional 

tasks. In task-6, the robot was required to move the object up and down three times, 

then to move the object left and right three times, and finally to go back to the home 

position. In task-7, the robot was required to move the object backward and forward 

three times, then to touch the object with one hand, and finally to go back to the home 

position. After the retraining, the robot reproduced the novel behavior sequences 

successfully with generalization across object locations (an example robot movie can be 

seen in video 2 in the supplementary material in [37].) Fig. 11 displays an example of 

regeneration of the novel behavior sequence of task-6, in which we can see that the 

visuo-proprioceptive trajectories were perfectly generated as compared to the teaching 

target ones.  It can be also seen that activation patterns of the fast context units 

synchronized with the perceptual sequences, whereas those for the slow context units 

changed much more slowly, in accordance with the earlier experimental design. 
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Fig. 11. An example of teaching and generated patterns for the novel behavior 

sequence of task-6. 

 

In order to examine the effects on the learning process of timescale differences between 

the slow network and the fast one, the experiment that included training of the 

additional novel sequences was further extended. In this extension, the difference in the 

timescales was described in terms of the ratio of ʐ values in the fast and slow context 

units as (†/†). First, after initially randomizing all the connectivity weights in the 

whole network in each instance, the basic sequences were trained five times, with the 

time constant ratio (†/†) set to five different values from 1.0 to 14.0, and with † fixed 

at 5.0. Then, the additional novel sequences were trained five times. In these instances, 

the connectivity weights were randomized only in the higher network while the weights 

in other sub-networks were preserved, and while the time constant ratio (†/†) was 

adjusted in the same way. In both training cases, learning was iterated for 5000 epochs. 

As a result, the average root mean square error achieved over five trials for five 

different time constant ratios is shown for both basic cases and additional cases in Fig. 
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12. 

 

 

 

Fig. 12. The average root mean square error over five training trials, each with a 

different time constant ratio, is shown for both the basic learning case and the 

additional one. 

 

It can be seen that the learning error for the additional training case started to increase 

significantly when the time constant ratio was set to less than 5.0, while the one for the 

basic case remained almost constant regardless of the time constant ratio. It was also 

found that the robot could not generate both of the novel behavior sequences 

successfully when those sequences were trained with time constant ratio settings of 2.0 

or 1.0. From these results, it can be inferred that the higher network could not 

reorganize the novel primitive sequences simply by adapting the weights in the higher 

network, because the primitives had not been acquired in the lower network in a 

reusable manner through the basic training phase when the time constant ratio was set 

too small. This is because two types of memories, one for primitive patterns and the 

other for the sequencing of them, cannot be segregated in the lower and the higher 

networks in the case of learning under the condition of the small time constant ratio. On 

the other hand, with larger time constant ratio values, such as 5.0 and 14.0, it is 

postulated that the functional hierarchy self-organized between the two sub-networks 

such that a set of primitive patterns stored in the lower network could be reutilized to 

generate the novel sequences of the primitives in the higher one. 

 It was observed that the time profiles of the slow context activities were 

smooth and uncorrelated with detail profiles either in the visuo-proprioceptive 

sequences or in the fast context unit activation sequences. Although the profiles of those 
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slow context activities drastically changed as the primitives were shifted from one to 

another, they never showed stepwise changes at the moments that primitives were 

switched, but rather only showed continuous, smooth changes. Most importantly, it can 

thus be said that the higher-level sequencing was realized not in terms of discrete 

event-like sequences, but in terms of the continuous flow of collective neural activities. 

The exact profiles of the slow context activities should be determined by the 

consolidative learning processes which attempt to find compromise between two 

potentially conflicting factors. One of these factors is that the slow context unit 

activities can change only gradually because of their time constant constraint, and the 

other is that the prediction output error in the lower-level network should be minimized 

by adequately modulating the slow context activities which work as nonlinear 

parameters, regulating the lower-level network dynamics. 

 The gradually changing profiles in the slow context units seem to contain some 

contextual information, useful for counting cycle times in cyclic patterns as well as for 

predicting the next primitives to switch. When the activities in the slow context units 

were slightly perturbed by adding artificial noises, the counting became imprecise with 

plus or minus 1. However, it was always observed that these behaviors were smoothly 

connected to the next primitive and that transitions to the next primitive never took 

place mid-way through an ongoing primitive. For example, in task-6, moving the object 

up and down an incorrect number of repetitions (four times rather than the correct three 

times as had been taught), smoothly connected to the next primitive of moving the 

object to the left and right after locating the object on the floor, even though the cycle 

times were counted inaccurately. This implies that what we may call ñfluid 

compositionalityò had been developed via iterative interactions between the higher-level 

neural dynamics and the lower level during the learning process.  

 

D. Learning to Generate Spontaneous Combinations of Primitive Actions 

The previous experiment showed how robots can learn to generate a set of task 

behaviors, each of which comprising of a deterministic sequential combination of 

behavior primitives. However, everyday behaviors of human beings appear to be 

spontaneous, their sequences being not so fully predetermined. Consider the actions 

involved in making pasta as an example. After pouring water into a pot, and putting it 

on a gas stove, I can either light the gas stove or put a spoonful of salt in the water. Or, 

very often, I completely forget to add salt during the preparation of the pasta, only to 

remember the salt later when I take the first bite. As this example illustrates, some 

segments of action sequences are deterministic, and must be done in order to satisfy the 
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goal, while others are nondeterministic, even optional, and where we might find 

spontaneity in action generation. 

 Psychologists have studied this aspect of human behavior in terms of statistical 

learning. Their observations on child development as well as adult learning have 

suggested that chunk structures can be extracted through statistical learning with a 

sufficiently large number of perceptual and behavioral experiences [40]-[42]. Here, the 

term ñchunk structuresò denotes repeatable sequence patterns as chunks, or primitives, 

and takes account of probabilistic state transitions between those chunks or primitives. 

One important question, here, is how dynamic neural network models can learn to 

generate ñspontaneous behaviorsò by extracting the aforementioned statistical structures 

for chunking. And furthermore, what is the origin of the probability underlying the 

statistical structure observed in spontaneous behaviors? 

 For the purpose of investigating these questions, we conducted the following 

robot learning experiment involving statistical learning of primitive action transition 

sequences [29]. The same humanoid robot with the same setting described in the 

previous section was trained to imitate object manipulation behaviors though direct 

guidance by a tutor. The target task to be tutored contained stochastic transitions 

between primitive actions as shown in Fig. 13.  

 

 

 

Fig. 13. Task of successive stochastic transitions of action primitives tutored for a 

Sony-made humanoid robot. Each action primitive starts with both hands 

approaching a green object, grasping and moving the object to two alternative 

possible positions with 50% probability for each, releasing the object, and finally ends 

with the hands going back to the home position. 

 

A colored object was placed on a table in one of three positions (left, center, or right), 
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and the tutor repeated a primitive action proceeding as follows. Beginning from the 

home position, both hands approached the object for grasping, then grasped the object. 

Then, the object was moved to one of two possible positions with equal probability 

(50%). After releasing the object, the hands returned to the home position. The tutoring 

of the action was performed continuously, with each next object position determined 

randomly, and no explicit cues were provided for segmenting the sequences. This 

tutoring process generated 24 training sequences, each of which consisted of 20 

transitions of primitive actions, amounting to roughly 2500 time steps of continuous 

visuo-proprioceptive sequences. Using the same scheme described in the previous 

section, this experiment used these training sequences for off-line training of the 

MTRNN. The MTRNN consisted of a higher-level network containing 30 context units 

(† ρππ, a lower-level network containing 30 context units († ςπ, and an 

input-output network containing 16 gated modular networks with each of which 

comprised of 10 neural units († ς (for further details see [29]). 

 After the training of the network, we tested the robot for its ability to imitate 

each tutored sequence. Beginning with the network set with the acquired initial state, 

the trained primitive action sequences consisting of several primitive action transitions 

were reproduced exactly during the initial period. However, generated sequences 

gradually started to deviate from the learned ones. Newly generated sequences deviating 

from the learned ones were aperiodic, with various sequential combinations of moving 

the object to left, center or right being observed. Statistical analysis conducted on the 

transition sequences generated over longer periods (300 transitions of action primitives) 

showed that the probability of transitioning to one of two possible alternatives was in 

the range of 40% to 60% for each position, approximating that of the tutored sequences. 

An example movie for demonstrating the corresponding robot behaviors can be seen in 

video 3 in the supplementary material [37]. 

 In order to more rigorously examine the capability of the model network to 

extract stochastic structures hidden in the tutored sequences, we performed analyses on 

the look-ahead prediction sequences generated by the model network during its 

closed-loop operation while repeating the training of the network under different 

conditions. In the closed-loop operation, long sequences of look-ahead prediction for 

the visuo-proprioceptive state in terms of ñmotor imageryò can be generated by feeding 

the current prediction outputs to the next inputs without using the actual sensory inputs, 

as described previously. Fig. 14 shows an example of the closed-loop generation by the 

prior trained network, in which the neural activation sequences in units with different 

timescales on different network levels, and the associated visuo-proprioceptive 
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sequences, can be seen.  

 

 

Fig. 14. Forward dynamics generated by the closed-loop operation of a trained 

network showing a time series of primitive action labels (R, C and L) in terms of 

vision (relative object position in two dimensions), proprioception (two representative 

dimensions), and activities of 30 fast context units and 30 slow context units with 

grayscale plots. 

 

This figure demonstrates that neural activities in the lower-level network and in the 

higher-level network developed with their intrinsic timescale dynamics, as had been 

observed in the previous experiment using the MTRNN.  

 Next, an analysis was conducted for cases introducing different transition 

probabilities in the tutoring. For this purpose, the tutoring sequences were newly 

generated by changing the transition probability (the probability of selecting an action 

of ñRight to Centerò in Fig. 14) from the original 50% to 25% and to 12.5%. The 

number of generated tutoring sequences remained the same as during the previous 

tutoring, one for each transition probability case. The network training was repeated 100 

times, utilizing different random settings for the initial weights in each case. Then the 

transition probability was measured for the visuo-proprioceptive sequences produced 

via the closed-loop operation of each trained network. Fig. 15 shows the mean of the 

transition probability obtained from the results of 100 trials of learning for each of the 
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aforementioned three probabilities. It can be seen that the transition probabilities of the 

reproduced actions mostly followed the target ones.   

 

 

 

Fig. 15. The mean probability of selecting the action ñRight to Centerò of 100 trained 

networks for three different probabilities (12.5%, 25% and 50%) during the tutoring 

session. 

 

This result implies that the employed model could learn to extract the statistical 

structures of chunking with their corresponding transition probabilities from the tutored 

sequences. 

 Next, we investigated the main issue, namely the origin of indeterminacy or 

spontaneity in choosing action primitives. In order to avoid the possibility that the 

stochastic property was originating from miscellaneous real world noise sources, 

including sensory noise and mechanical noise, the intrinsic dynamics of the network 

model attained by the closed-loop operation was analyzed again. For purposes of 

examining the dynamic characteristics of the network quantitatively, a dynamic measure 

known as the Lyapunov exponent was calculated for the activity of each sub-network 

during generation of motor imagery. A positive or negative Lyapunov exponent value 

indicates the rate of divergence or convergence of adjacent trajectories in a given 

dynamic system, respectively. A positive value for the maximum Lyapunov exponent 

(MLE) as the largest component indicates that chaos is generated in the system. We 

computed the MLEs for the higher- and the lower-level networks (see APENDIX-A for 

the method.) The computation was repeated 100 times with different connectivity 

weights developed from the initial weights randomized with different seeds but under 

the same learning conditions. The computation results showed that the average MLE for 

100 trials of training was 0.000533 for the higher-level network and -0.007424 for the 

lower-level network. It was also shown that the probability of showing a positive value 

of the MLE was 94% for the higher-level network and 0% for the lower-level network. 


