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Abstract

The most pressing questioabout cognitive brains is howthey support the
compositionality that enables combinatorial manipulations of images, thoughts and
actions. When addressinigig problem with synthetic motileg, the conventional idea
prevalentin artificial intelligence anaognitive sciencegenerally is to assume hybrid
systems and correspondimgural network modelswhere higheorder cognition is
realized by means afymbolic representation arldwer sensorymotor proceses by
analogue processindgiowever, the crucial problemwith such approaches is thtie
symbols represented at highender cognitive leval cannot be grounded naally in
sensorymotor reality.The former are defined in a diste space without any metaad

the latter are dafed in a continuous spa®éth a physical metricThese,therefore
cannotdirectly interact with each otherregardless of the interface that is assigned
between them. The proposal in the current paper is to reconstruct-birgkeicognition

by means of continuous newtdgnamicsystems that can elaborate delicate interactions
with the sensommotor level while sharing the same metric space. Our neolmtics
experiments including languagection associations arttle learning of goaldirected
actiors - show that the compositiafity necessary fohigherordercognitive tasks can
be acquired by means of selfganizing dynamic structures, via interactive learning
between the toplown intentioml process of acting on the physical world and the
bottomup recognition of perceptuatality. Using robotic simulationghe current paper
demonstrates that nonlinear dynamleenomena, such dsfurcations and the chaotic
dynamics induced yb unstable fixed pointscould play essential roles in reahg
higher-order functions.
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|. Introduction



One ofthe amazing aspects dlumanbrains is that thegan generate diversboughts,
images andctionsthrough novel combinatiorsf acquired knowledge and skillSuch
cognitive competencys expressedvell by the principle of compositionality, i.ethe
meaning of the whole is a function of the meaning efpiarts. A describedoy Gareth
Evans[1] in regard to languagehe principle of compositionalityasserts that the
meaning of a complex expression is determined by the meanings of its constituent
expressions anthe rules used to combine them, to,wintences are composed from
sequences of wordsombined according to grammatical rules, and can be decomposed
similarly. This central notionthat the whole can be decomposed into reusable parts (or
primitives) by following rules is applicable to other facultieas well,such asto the
generation of complexction routines For example, e mdor schemata theory [2]
proposesthat mmplex goaidirected actions caie decomposed into sequences of
behavior primitives. Here, behaviprimitives arecommonly used behavi@egments

or motor programs.

From the preceding considerations, crucial questionemerges. dw is
compositionalityrealizedin cognitive brainsZognitive scientists have considered that
suchcompositionality is a product @hanipulationof arbitraryshapes ofokenswithin
a symbaic system[3]. Becausdhe manipulation of symbolgvhich are, in themselves,
without any physical dimensions such as weight, length, speed, oiiddree from any
constraintsdue to these physical dimensions on possible combisatibsuch symbols
a symbol system provided with recursive functionality achieaspositionality with
an infinite range opossibleexpressionsHowever,studies on intelligenfor cognitive
robots have revealedhat this framework, employingsymbolc representation and
manipulation encounters problems wheyymbols are required to lgrounded within
the context of continuous ssarymotor flow [4]. This problem,the famoussymbol
grounding problem[3], [5], becomes cruciafor cognitive robots especially when
inconsistenciesappearbetween what the symbdével representsn the topdown
pathwayand the reality whicharisesfrom the sensorymotor levelin the bottorup
pathway.It is assumedhat both levelshould participate inattemps to resole such
conflicts via cooperative processes. This cooperation entails iteratiteractions
between the twdevels through which optimal matching between them is sought
dynamically. If ondevel pushedorward a little, the otheshould pull back elastically
so that a point of compromise can be found through iteralynamic interactions. Yet,
this problem isnot so easily solved through conventioralbrid approaches. he
symbol systems defined in a discrete space tacerigid to afford suchdelicate
interactionswith the sensormotor system. Moreoverhis problem cannot be resotve



by simply implementingarbitrary interfaces between the two systerbecausethey
simply do not share the same metric space for the interactions.

Confronted with these difficultiest may befruitful to inquire into how this
problem isunderstood, angossibly solvedin terms ofhuman brainsSpecifically, we
would like to know how neurml structuresenabling compositionality in the
higherordercognitionlevel developin humanbrains With such informationwe might
better understanthiow such structuresan remain adequatelygrounded inongoing
pereptualinput However,it is fair to say that thesemechanisms are not yekactly
understood Significant evidence has accumulated, evertheless,for a convergent
understandingthat the prefrontal cortexs involved in compositionalitydue to its
executive combl of other parts of the braif6]-[8]. Joachim Fusterwrites in his
textbook [8] that executive function is the ability to organize ajsence of actions
toward a goalan operatiomequiringcompositionality aslescrited previously. Another
aspecbf compositionalitywithin humanbrainsfor which there is some evidentsethat
they utilize hierarchy in complex information processing-or instance, thevisual
recognition of complex objects is performed hierarchi¢ddgginningwith V1 and V2
for simple fedure detection,and proceedingo the infereemporal cortex forthe
integration ofthose features inttmore complex composition§9], [10]. Evidencealso
suggeststhat complex actions argeneratedsimilarly, by means ofan organking
hierarchy[11], the general undaending of which proceedss follows The prefrontal
cortex sits on the top of the action hierarchgd generatesan abstractgoatdirected
action plan The next levein the hierarchy iomposed othe supplementary motor
area (SMA) and the premotor cortex (PQ@hese are thoughb be responsible for
generating motor programs for voluntary actions and sergodged actions,
respectively. Thee areashensend signals to the nexawer level,the primary motor
cortex (M1) where it isbelievedthat primitive motor patterns are rggrated M1 then
passegaterned motorsignals further downwardia the pons and cerebellum to the
spinal cord, which then sends out detailed motor commandsrtesponding muscles,
finally initiating physical movemest That said,it must be noted thathe complex
action generating hierarchy in the human brain is not so simjther parts of the
humanbrain arealsoinvolved in the generatiorof complex actions. In particulatudies
on apraxiacaused byerebral hemorrhageave suggested that théerior parietal lobe
(IPL) is crucal for generatingkilled actiondike tool usagd12], [13]. Thisis because
skilled actons, such as manipulating@n object asa tool, require motor related
multimodal sensory feedbag¢kand this visuc-tactile-proprioceptive integration is
developed in the IPlthroughdense intactions between the frontahd the parietal



lobes[14].

Consideringhe evidence that human brains achieve compositionality through a
functional hierarchy embedded in neuronatworks connecting different local regions
our original question returndHow exactly is compositionality realizedat the neural
circuit level?Specifically, we may askDo some neuronal circuiteehaveasif symbok
wererepresented and manipulated,dagital computersdlo? Some may argue thdhe
discovery of'grandmothecells’ [15] suggest something likesymbolic representation
in neuronal circuitsHowever,the evidence does not wholly support such an argument.
Some cellsdo appear to demonstratpiite narrowresponseselectivity as ifactivated
only by a particularperceptualstimulus such asone'sgrandmotheis face However,
when tested with diverse visual stimuli [1L&]hasbeenfound that theesamecells can
alsobe activatedy other type®f visual imagesRatherthan each iterbeing discretely
represented by corresponding celineaning andconcepts are more likely encoded in
distributed activities of neuronahsemblesAnd, if sucha distributel representation is
thereality in biological brains, how can we imagirempositionality bing realizedby
thenf

In pursuing this questionhe current papepresumesthe following modeland
from this basis makes two centt@ypothesse. The model on one handpresumes a
top-down intentional pathwalpy which compositionalimages and plans for acting
and onthe world are proactivelygeneratedunder particulaintentional statesOn the
other hand, the model presusna bottormup pathwaywhich is responsible for
recognition of thecontinuously updategerceptual realy. The core hypothesis is that
compositionalitydevelos by means ofthe self-organization of a particular class of
dynamic structures These structuregprovide for dense interactiondbetween the
aforementioned two pathwaydoth during the courseof consolidative learning of
perceptuakxperienceand throughdiverseintentional interactions of the agent with the
outer world. It is further spewlated that compositionalitydeveloped in such
neuredynamic systemsan be naturally grounded isensorymotor reality. These
hypotheses are examined via synthetic modeling studies accompanied by robotics
experiments. The robotics experiments inclu@arning of compositional action
generation and associative learning of pilattguage and corresponding actions.
Although these synthetic modeling studieay not be able t@rove the biological
reality of the proposedypothess, it can provide proof of ginciple for "brain-like"
realization of cogitive competence imrtifacts i.e. cognitive robotsThe next section
describes the basic framework that underlies all subsequent demonstrations.



[I. Basic Frameworks of the Models

This section describe how the top-down proactive intentional processes and the
bottom-up recognition processes colddrealizedin a particular neuralynamic system

and how these two processes can interact densely in the course of learning agwell as
generating compositionahctions. Furthermore, itdescribe how the model can be
extended tgroduce dunctional hierarchy for action generation.

A. Learning to Predict/Remgnize PerceptualSequences

Tani andcolleagues [17]19] have shown that learning, generatiagd recognizing
sensorymotor patterns can be accomplistgdextending conventional RNN modgits
terms of prediction error minimization withira particular dynamic neural network
mode| a recurrent neural network with parametric biases (RNNRPB)], [21]. The
dynamicsof themodel can belescribed by a difference equatidn):

» AR ho h, (1)

where @ is the current internal neural stafé is a set ofearnable parameters such
as connectivity weights and biasesjs the intention state, an@ is the perceptual
state which is an observable stat@is equation represents the {pwn intentional
process wher&y (the perceptuastate atthe next time stefdor a given intentional
state v) is predictedby means othe dynamicmapping fromthe currentinternal state
@ and the current perceptuatate . This mappingis parameterized by which is
acquired through the learning processcribed laterThis forward dynamics model can
be regarded as a generative masligh the intentional state beirgy to regeneratéhe
corresponding perceptusgéquencehat islearned Fig. 1(a) illustrate how this idea can
be realizedin the RNNPB model where the PB units in the input lagepresent the
intentional staten question It is noted that® is the initialinternal state setwith a
neutralvalueasin the case of learning described next.
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Fig.1. RNNPB model, (a) Perceptual sequences for given intentional states are
predicted, (b) Target perceptuaksequences are learned by inferring optimal
connectivity weights and itentional states by means pfediction error minimization
where red arows denote error signal baegropagaton, (c) intentional states for
given perceptual sequences are inversely computgdmeans ofprediction error
minimization.

The systenpredicts perceptuaequenceto becaused by the intentional staitherin
an open loopmode or in a closed loop modeln the open loop mode, an actual
movement is made by gengrg the onestep prediction of the next perceptsahte
through the usef the current oneln the closed loop mode, a lcakead prediction of
multiple steps ofa perceptualsequence is generated by feeding back peslicted
perceptuaktate fromthe previous step to the rrant inputs. Thigprocessan generata
motor imagerysequenceevolving in correspondence with specificintentional state.
Although the RNNPB model employs a hidden units layer betweemphe and the
output layers, thesare not shown in Fig. 1.

Next, the leaming process is described. Theatningof a set of intentional
actionsin a supervised manner formulatedas the process of mimizing the prediction
error betweenthe teaching targeperceptuakequenced and its prediction® in (1).
This is accomplishetly searchindor the optimal vales ofthe learnable paramesaW
common to altargetactions to be learneaks well agor the correspondingntentional
state yfor each action (see Fig.1 band is implemented by utilizing theerror
backpropagation through time (BPTTIgorithm [23. In the learning processhd
top-down predictionof a perceptualsequencds unfoldedin time with a particular
intentioral stategiven as theinput. Then when compared to thdarget perceptual
sequencean error signals generated antdackpropagatedhrough the internal state
loop to the intention stateThus, throughbottomup recognition the connectivity



weights and the intentional states gradually updatedin fact, throughiterations of
this learning process dense interaction between thep-down and the bottorup
processess facilitated andin this wayprojectedperceptualmagesoriginatingfrom the
intentioral statecan be shapely andgroundedn thereality ofthe fiobjectiveworldo.
Finally, the process ofrecognizing a target perceptuasequence can be
formulatedasa process o$earching for an optimal intentional state by which the target
sequence can kgeneratedvith a minimum error while the learnedeight parameters
W remainfixed (see Fig. 1(c)). The aforementioned model fsrmally related tothe
idea of predidve codingas developedy Rao and Ballard [33 It also bears formal
similarity with that ofactive inference for wibh Friston [24 hasrecentlydemonstrated
a generalized framework under the naméreéenergy minimizationin the model by
Friston[24], the prediction of a subsequergrceptual state iaccomplishedy means
of approximate Bayesian inference throdigé estimation oboth mean and variance.

B. Functional Hierarchy

On the computational viewgompositionality requiressome hierarchical operations
involving themanipulation of a set of elemenisa lower levelthrough the application
of particular rulesfrom a higher levé This is analogous tstoring and retrieving
behavior primitivesor words in the lower levebnd combiningheminto goatdirected
actions or sentencdsy following scenarios or planfsom the higher levelHow can
dynanic neural network modslrepresentsuch mechanism®sOne possible ways to
consider a cascade aforanentioned RNNPBnodels operating according different
timescales [18]Suchamode| operative oriwo levels can be described 428):

(2)

Here,t denotes time m the fastertimescalewith a smalleraOfor each time stepn the
lower leve|] and T denotes timen the slower timescalavith a larger3Qin the higher
level, while | andh denotesuffixesfor the lower level and the higher level, respectively.
The main idea is that in the lowe-level dynamc function works as a slowly
changing parametdior "Q which is predictedas , by the higheievel dynamic
systemoperatingn the slower timescal¢see Fig. 2 (a))
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Fig.2. Hierarchically-organized RNNPB model. (a) A epceptual sequences
predicted for intentional tates given in the higher level(b) Target perceptual
sequences are either learned or recognized by inferring both cetimgy weights and
intentional statesor the intentional states onlywhere red arrows denote the error
signal backpropagated from the lower level to the higher level.

The prediction of , is generatedhs corresponding to the higHewrel intentioral
state, . This is an important aspect of the implicit generatmede| dueto the
fundamental rolglayed by theseparation of temporal scaléhis separation enables
higherlevel dynamics tocontextualize (through the provision parametric biases)
faste fluctuations at lower levelsand recapitulates the causaftusture of the
(hierarchical) world that the agent is trying to predictsum,a functional hierarchy is
achieved by me a n s -dimdnsiorah paréinreetbics comtral covdlbe | o w
lower-level dynamic function by the highdevel one.In thelearningprocessthe ctlta
error signalis backpropagatedrom the lower level tahe higher ondy being passed
from , to, andfinally to the highetlevel intentional state wherebyparameters
®w andw as well as, are updatedn the direction of minimizingerror (Fig. 2
(b)). A target perceptuabequence cartbe recognized simplyby updating , by



utilizing the delta error delivered fnothe prediction error for the perceptual inputs.

The aforementionedhierarchi@al model can beimproved, further, by
consideringhat perceptual sequengmtterns are experiencadcontinuous flowrather
than as discrae events and by adjusting thenodel to operate in continuous time
accordingly For this purposeconsider acontinuous time recurrent nel network
model CTRNN) [25], [2G consisting of sulmetworksthe dynamicsof which are
characterizedby the different values oftime constants assigne@uch amodel is
referred toas a multiple timescals recurrent neuratetwork (MTRNN) [27], [28] in
whichtheforward dynamic®f each neural unis described as (3):

-To 60 B0 ® Buo O
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wheret, 6, ®, & and @ arethe time constantthe membrane potential, the neural
activation statdor an output unitandfor aninternal (contextunit, and the bias of the
ith unit, respectively.It is important tonote, herethat the activation of output units
follows a softmax functionwith 6 asthe potentialvalue at the ith cell within OutN
cells, while the activation ofinternal urits follows a standargigmoidal function. This
treatmentis stipulatedin order tomake the outpupatternsactivateonly sparselyi.e.
the summation ofOutN output units becomes 1.00is thekth input and 0 is the
connectivity weight from th@h unit to theith unit. When the time constant is set at
a larger value, the actition dynamics ofhe unit tendo be slowerConversely, with a
smaller value they becoméefaster. If the whole network is built ag @scade of
subnetworks with the highetlevel networkconsisting of dynamic units with larger
time constant and with the lowerlevel network with a smaller time cstant as
illustrated in Fig. 3afunctional hierarchy similar to thene described fathe RNNPB
with discrete timeemerge.
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Fig. 3 MTRNN model with top-down perception prediction according to a given
intentional stateon the lefthand side and withbottomup perceptiorrecognitionand
learning on the right-hand side

On the topdown pathway, the intentional statethe highedevel network isset with
particular valuedor initial statesin someneural unitsthe so-called "intentior' units,
and slowly changing neurahctivities in this higheflevel networkare initiated This
slowly changing actity affects the faster dynamics ttie lowerlevel netwak by
means of parameter modulatiamd bifurcation resultingin the modulaton of and
shifting in sequenceatterrs predictedby, and generatedn, the output unitsin the
learning process, the error generatedhe comparison athe target sequence and the
prediction sequenckackpropagateshrough timeto the initial states of the intention
units in the highetevel networkby going through all connectivity weights in the whole
network wherebyall of the connectivity weightsas well as the initial states for each
target sequencare updated.

Through theterative interactions between tdpwn prediction andottomup
error regressignwhich the whée network undergoes all levels in a distributed and
parallel mannerit is almost inevitableghat an adequate functional hierarchy between
multiple levels with different timescales cand will self-organize The exactearning
mechanism incorporates modified BPTT schemehich consides the effects ofeach
time constani@assigned teeach dynamic unit ilMTRNN [27]-[29]. ConsiderE as a
summation of prediction errors for all output units and for all time stepghvhich is to
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be minimized through théearning processk is represented in terms @fullbacki
Leibler divergences

% BB. ofaéd (4)

where 3, and Wy are the teget output and output for thith outputunit at time ste,
respectively. Each connectivity weight is updated in a direction opposite to that of
the gradientR&A Fo  as

0 ¢ p o ¢ | — (5
where J is the learning rate andis an index representing the iteration step in the

learning process hen, — is given by:
— B-——; (6)

andthe delta error aheith unit — is recursivelycalculated from the following
h

formula:
- 000
h
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where AEeeis the derivative of the sigmoid outpunction and]  is Kronecker delta
function.By looking atthe second line of (7} can be seethat theith unit in the

current step inherits a large portionp — of the delta erro—— from the same
h

unit in the next steptl when its time constant is relatively largelt is noted that (7)
turns out to be theonventionaldiscrete time versioof BPTTwith T set as 1.0This
means that, in a slow dynamic network with a large torestanterror
backpropagates through time with a small decay. rékes enabledearning of
long-termcorrelationdatentin the target time profikby filtering aut fastchanges in
the profiles In addition, an optimabhitial stateof the intention unitan be searchedr
by updating thenembrane potential stat®; andby utilizing the delta error
backpropagated through time to the upitthe ¢"stepas:

0p e P OfpeE | —— (8)

In summary, the precedingdescribesa generic scheme based on the

hierarchical composition of (autonomous) dynamical systemsémaé asa generative
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model of both exterocept and proprioceptive input¥he deep hierarchical structure,
and theseparation of temporal scaleescibed in this model (through descending
parametric biasesgnablethe agent to predict and to learn, informed as it ighey
sensorimatr contingencies entailed in ienvironment (and its motor planirucially,

on this point,all levels of the modelest upon continuous dynamiesvhere symbolic
representation is implicit in the (unstable) fixedimis of the dynamical systeri
secondkey aspect of this framework is that there are rieix sensory response links.
These are acquired through descegdpredictions of sensory observations in both the
visud and motor domainThis means that sensorimotor constructs are represented as
amodal dynamics at the top of the hierarchy (with protracted timescplesjding
bilateral corollarydischarges opredictions about the state thie world and the motor
plant.In what follows, we will use this scheme in a number of experimental contexts to
show how it accounts for the learning of mopimitives, imitative behavig andfor

the generation of spomtaous yet deterministic behavior, d@hrough the use of
(entrained) chaotic dynamics.

[ll. Neuro -Robotics Experiments

This sectiondescribesrobotics experiments utilizing the aforementioned dynamic
neural network models the examination ohow an agent may develdpe capacity to
compose complexognitive behaviorswhile remaining grounded insensorymotor
reality. These robotics experimenexploreresearchopics including(a) dynamic shifts
of action intentioms viarecognition ofsituatioral changes in the environmer(b) the
developmenbf compositional concepts via associative leartietyveemprotolanguage
and behaviors, (c)he tutoring of complex skilledactions, and (dthe spontaeous
generation of combinatoriahction sequenced-urther, analysisof the dynamical
structures seHorganized in the modelander considerationill also shed light on
essential neurdynamic mechanismsunderlying compositionaty in humanlevel
cognition.

A. Dynamic Shifts of Action Intentions via Bottom-Up and Top-Down Interactions
The following robotics experimentsytilizing the RNNPB modeldescribed earlier,
examine how the toflown intention to acton the physical environemt can be
dynamically adaptedby the bottomup recognition ofperceptual realityaccording to
situational changes in thenvironmenf{(for furtherdetails see[30]). In the currentask,
a small humanoid robobade bythe Sony Corporatiotearned to generatell fiplayingd
behavios under human tutoring. The human tutoranually guided the robdb
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movements helping it to manipulate aball by grasping its armswhile the robot
perceived sequees of two typesvisual and proprioceptionThe robot'svisual
perceptionS took the formof the 3-dimensional relative position of the ball on the task
tableasmeasured by color trackingnd the proprioceptioll; of the binanual arms and
handswas represented b DOFs of the corresponding joint angléster repeated
training, the robot waable to predicthe visuo-proprioceptivestate ofthe next stepn
an action sequenc&he actual movement of the robot arms was generated by sending
the predictionthe next target valuesf the nextproprioceptivestepin terms of 8 DOFs
of joint anglego the motor controllerof thearms.The robot was trained fawo types
of ball play "Play-1" consisted inrolling the ball from the lefhand side to the
right-hand side and viceversa repeatedly by gently pushing with both hands.
"Play-2" consisted inrepeatedlygrasping the ball in the middle positidifting it up,
and then droping it. By following the scheme shown in Fid(b), training of the
RNNPB was conducted whetbe visueproprioceptive sequencesYR)  obtained
during the tutoring sessiongas utilizedas target training sequencése training data
consisted of 6 cycles akequences both f@lay-1 and play2. Note that the objective of
the training was to make the network regenerate two typés target
visuo-proprioceptive sequees depending on the intention states (the PB valdsh
had beerself-determned throughthe training processVe employed an RNNPB that
has 1l input unitsand 1 prediction outputnits. It alsohas two PBunits 50 hidden
units and 70 contextinits representing the internal state. The learningwasiterated
for 50,000epochs starting from an initial random set of synaptic weigfitee final
rootmeansquare error of the outpuhits becamdess than 0.0003t was assured that
a different PB vector value was determined for dgpk ofplay.

After the training, the robét behavior generation for the learngghes of
ball-play was tested by following a scheme of online generation and recogriitien.
robots movemens were generated by feedingthe nextstep predictiors of
proprioceptivestates (the joint angles of bimanual arms and hands) to the position
controller of the robgtandthe PB vector was updated bheans obr-line recognition
of visual perception (thperceptionof ball position).For the online recognition press
(PB regressionutilizing the prediction error), 50 instances of forward and
backpropagationwere ®nducted using a 3&tepwindow onthe immediate past in
order to determine the P& each next time steflhis repeated behavior generation
experimenshowedthat although the robot tended $tally generate one of thedrned
types of ball playthetype of play switched from one tdé other intermittentlyFig. 4
shows asequence of photo snaps ati@ correspondingplots of time evolution of
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parameters during this particular behageneration.
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Fig. 4 Autonomous behavial swi t ching fromogralsipi mg
dr op pi n gheBay hHubanaidimobot QRIO. (a) The cosponding photo snap
sequence(b) Time profiles for thepredictedball pasition (X, Y, Z)in vision, its actual
perception predicted joint anglega representative joint angle for each arm), and the
PB vector (PB1, PB2).

In Fig. 4a) it can be seen thhehavior switching takes place in the ninth photo snap.
Fig. 4(b) showstime profiles for the predicted Baposition, its actual perceptipn
predided joint angles (representing twaut of a total of eight DOF), and the
two-dimensional PB vectof-rom the time profileof the ball position andhe joint
angles it can be seen thhehavior switchingook placebetween 200 and 350 stegrsd

that itwasassociated with a shift in the PB vectbhe behavior switching was initiated

by a small fluctuation in ball positioning durirfigolling balld play at around the 180

time step whenhe ball came slightly more toward the center than was predicted in the
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case of pushing the ball from the right sidéhe resultant prediction error caused
gradual modulation of the PB vectimward the value fofigrasping the ball located at
the cented which causedhe armto graduallypush the ball toward the center more
Finally, play-2 of figrasping the ball ithe centeposition and droppingdtwas initiated

by achieving a perfect match between peeceived ball position and the one predicted
by the modulated PB value. He, we can see howntention can bedynamically
modulatedthrough the bottorup recognition of the perceptual reality by utilizing the
error regression scheme.

B. Associativel earning BetweenProto-L anguage andBehaviors
The faculty forlanguage andhe facultiesfor other types ofaction have beetreated
independeny in conventional neurosciencRecently, however, some researstieve
beenlooking at these functionatilizing various brain imaging techniquescluding
fMRI, PET and EEG,and this research has begim suggesta certain dependey
between them Hauk etal [31] showed in aunctional MRI experiment that reading
action related words with different endegftors,e.g.fiL i c fPd ,c k GK iamédoke
neural advities in motor areas correspondingth the local areas responsible for
generating motor movementstime face, arm and leg, respectively. Thisulesas well
asthat reported i1j32], suggest thatinderstanding words or sentences related to actions
may require the presence of specific motor circuits responsible for generating those
actions, and therefore the parts of the brain responsible for langseaedotherforms
of actionmight be interdependenPulvemuller{33] argues thatif everydayexperiences
of speech andcorresponding sensemotor signas tend to overlap during infant
development, synaptic connectivity between the twoudis can be reinforced through
Hebbian learning. This suggests a possibility that meaning and concepts of words and
sentencesare acquired as associations witktlated sensorynotor experiences, as
discussed in the usatpase approactby Tomasello [3} i.e. @gnitive linguistics.
Therobotics experimentescribed in this sectioexplores thigossibility, that
the so-called fisemantically combinatorial language of thougat menticned by Fodor
and Pylyshyri35] can be developed in terms of newtynamic structures provided that
dense interactionare allowedbetween linguistic processes and behavioral dnethis
robotics experiment, &gexamined how a set of simple sentences consisting of verbs and
object nouns can be understp@dd the corresponding actiomsoduced by robots
utilizing an extendedRNNPB model[36]. The model consists of a linguistic RNNPB
and a behavioral RNNP#terconneted through PB units.
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Fig. 5. A linguistic RNNPB predicting word sequences ana behavioral RNNPB
prediding sensorymotor sequences, interconnected BYB units, where the PB vector
of each RNNPB is updated by utilizings own error signal while minimizing the

differencebetween two.

The centralidea behindhe modelwasthat the PB activ#on vectors in both modules
should be bound in order to become identical for generating pairs of corresponding
linguistic and behavioral sequences via learr{sge Fig.5). In other words, stimulus
response links are néormed by simply associating, enapping between words and
actions but by constructing amodal, high level, dynamical representations that hre bot
sensory and motor in natur. what follows, we will show that this representational
space embodies the fundamental distinction between the different actions that can be
undertakerand the objects that are the targets of those actitm® specificdly, in the
course ofthe boundlearning of pairs of linguistic and behavioral sequences, the PB
activation vecteos in both modulesvere updated in the direction of minimizing their
differences as well am the direction ofminimizing the prediction error in either
modality, aloneBy pasing the error signalbackpropagated from both modules to the
shared PB units, a sort of unified repentation between the two modalities could be
formed througtthe selforganization othe PB activationsAfter the learning converged

for all of the pairs, thecapacity to understandentencesvas tested as follow. A
particular word sequenceas shown to the linguistic moduleas a target to be
recaynizedby the PB regression scheme. Then, the PB valuenglokais the result of
regeneratingthe word sequencwith the minimum errorwas used to activate the

16



behavioral RNNPBn order to generata prediction ofthe correspondingerceptual
sequencaesponsiblefor generating that particulaobot behaviorHere, a tempting
expectation washat compositionality hidden in the perceived datathe linguistic
modality and behavioral modality could be captured in the internal +t3un@amic
structures shared by these two modalities via consolidative learning accompanied by the
top-down and the bottorap interactions.This hypothesiswas evaluatedthrough
experimenrs utilizing a physicdly mobile robot.

A mobile robot equipped witla camera andne DOF armwas placed in a
workspace where red, blue and green objects were always loocdkedeft, center, and
right of the robot, respectively (Fi§(a)).

an example of “hit red”

red, blue and green objects

eI ‘

one DOF arm
mobile robot camera
at home

(a) (b)

Fig. 6. The mobile robot with video camera aagm used in the experiment for
proto-language and behavior association leang. (a) The robot is facinged, blue
and green objects ats home position(b) An example of behavioral trajectory for
hitting the red object.

We considered aet ofimperativesentences consisting of 3 verbs (point, push, hit) and

6 object nouns (left, center, righed, blue, green)in these sentencefpoint blu®

indicatedthat the robot hatb pointto the blue object bgxtendingitsarm,ips h r e d o
indicatedthat the robohadto move to the red object and push it with its hady dit i h

| ef t 0 that the robattadtadmove to the object to its left and thiat objectwith

its arm Not ed & han dverédshmerfyrhodis in themployedworkspace setting,
aswereAibl ued amd afmade mtge eend and Arighto. For
verb and nouncorresponding @ions in terms ofperceptualsequencesonsistingof

more than 100 step®r each trialwere tutored by guiding the robatwith a remote
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controller, while slight variance in object positionsas well asin the robots starting
positiors were introduceduringeach trialof tutoring Such tutoringvas repeated three
times for each imperative sentenéar the purpose oinvestigaing the capacity to
generalizethe learning, only 14 out of 18 possible sentences were traineédalso
bound to thecorrespondindehavioal sequencesutored The remaining4 behavioal
sequences were trained withdagingbound tothe linguistic sentence¥he behavioral
RNNPB received26-dimensional multimodal perceptuaputs andit output their
prediction for eaclmextstep. Themultimodalperceptions includ21 feature values for
encoding visualmages, along with2 measuredorque values (an average torque value
of both wheels, and a torque value of the athig velocitiesof the two motor wheels
and a joint angle for the one DQ¥Fm as proprioceptionThe behavioral RNNPB had
70 hidden units, 4 context units and 6 PB units. The linguistic RNi¢P&ved a single
word at each step which w&ncoded by 10 input unifgachunit uniquelyrepreserga
singleworld out of 9 words and a starting symbahd outpuia prediction ofthe next
word as encoded in 9 output units in the same manftes RNNPB had 50 hidden
units, 4 cotext units and 6 PB units. It must bheted thatime-step processingy the
forward dynamics of these tWRNNPB modules was natecessarilysynchronousas
the learningof both modules was conductaff-line and behavior generation was
precededy therecognition of imperative sentences.

The learning process converged wattoot mean square error of 0.00f@t the
linguistic module and 0.025 for the behavior modateer 50000 epochs of iterative
training of thewhole network.In the succeedindgehavior generation test was found
that the robot could generate correct actions for all 18 sente@cesially, these
includedthe four untrained sentenceés.other wordsthe agent was able to genezali
the abstract and cognitive structure of its world as evident in its responses to novel
contexs. An example ofa fihit red trajectorygeneratedy the robot is shown in Fig.
6(b). It was also found that the robot could generate the corresponding behaviors quite
robustly agaist miscellaneous perturbatiod®r examplein the cases of'hitting" or
"pushing object behaviors, the robot could conte to track the target object even after
the object was slightly movashile approachingA such examplenovie can be seen in
video 1lin the online supplementary material provided[8V]. We examined hovweach
sentencavasmappel to the PB vector spackig. 7 shows this sentence mapping to the
PB space with its two principal components.
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Fig. 7. The observed mapping of 18 imperative sentences into the PB space
constructed by itstand 2" principal components. Thedur PB pointssurrounded by
dottedcircles represenPB values for untrained sentences.

Observe that the mapping appears with -dirRensional grid structure with one
dimension for verbs and the other for nouns, where all sentences with the same verbs
followed by synonymous nouns appe@rclose in the space. It is remt that even
sentence®f the unlearnedcombinationsi p u s he frt edd |aln d 7 p owere t greer
mapped to adequate positions in the grid (indicated by dotted cirglas)following

further experiments, it appears thiagégeuntrained sentences were recognized correctly
becausdheir meanings becameferabledue to structural relations witlearned ones.

The same experiment was repeaBetimes each timentroducingdifferent se$ of 4
unbound sentences. Weund that tle same generalization was attained by the trained
network modeln every casevherea similartwo-dimensional grid structure was formed

in the PB mapping. Howeveit was also observed that thgeneralizationwas lost

when more than four sentences were removed from the bound learhegg results

imply that meaning could be acquireds a relational structure among mawfythe
sentencesand that such structures can be developedthe distributed activation
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patterns of neural unitas the resulof the generalizationof learningif an only if a
sufficientnumberof exemplas is provided.

C. Learning Compositional Actions via SeHOrganization of Functional Hierarchy
This robotics expgment examinedhow a functional hierarchy can be ddeped in the
course of learningomplex actions dealing withobject manipulatiorby utilizing the
previously describedTRNN model. As mentionedn the introductory sectignit is
generallyconsidered that congx, goatdirectedactions can be generated by combining
reusableprimitives. A difficult question arises, however, concerning hdvehavior
primitives can be extractedrom direct experiencand then be storedh the memory
pool, when theperceptuakequencatself is naively experienceds unarticulatedow,
without explicit cues guiding segmentatianto those behavior primitivesAnother
guestionrelatedto thisone concerngow those primitives once stored memory can
be recombined to generasenooth andcontinuouspatterns ofoehavior complex yet
fluid operationswhich Luria [38] metaphoricdy refers to as "kinetic melodigsThe
centralproblem here is that cognitive competency for compositional ragfemeration
seems to require twincompatible aspects On the one hand, there appear to be
algebraic operations obehaviorprimitives treated as if they werdiscrete, concrete
objects and on the other hand there is fhidd and context sensitiveoncatenatiorof
one primitive withanothermatching the delicate flow of perceptual experieriCiee
following humanoid robotics experimefuicusedon this issue

The experiment was conductesith the Sony humanoid robot platform
utilizing theMTRNN archtecture showin Fig. 8[27].
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Fig. 8. The MTRNN architecture utilized in humanoid robot experiments examining
object manipulation.

By implementing a colorbased objecttracking camera on the rob®thead,
two-dimensional camera head amglargeting a red colored object represented the
visualy perceived object positiom . Eightdimensional joint angles in bimanual &m
represented the proprioceptive state The visual state) and the proprioceptiof

were mapped to softmax aeation patterns of 36 cells for visual stale and 64 cells
for proprioceptive stater] by utilizing corresponding topologgreserving maps
implemented irKohonen network[39]. The currentvisual stateb andproprioceptive
stater] were fed into theinput units ofvision andthe proprioceptionnput-output
networks respectivelyin order to predicits state atachnext time stepn the output
units. The whole MTRNN architecture consisteaf a higherevel networkcontaining
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20 slow contexunits (t  x 10 a lowerlevel networkcontaining 30 fast context units
(T v), the vision inputoutput network containing36 units (f ¢) and the
proprioceptioninput-output network containing 64nputoutput units (¢  ¢). Two
dow context units inthe highedevel netwok were assigned to represententional
states in terms of the initial stateéBhe units witln each networkthe highedevel
network and the lowerlevel network were fuly interconnected, as werthe units
within both the visiorand proprioceptiometworks. However, neither wetiee unitsin
the higheflevel networkconnected directly with the units the inputoutputnetwork
nor were the units in thevision network connected directlywith the units inthe
proprioceptiometwork Our assumptionvasthat this kind ofconstrainton the network
connectivitywould allow for the developmenbf information bottlenecksind hubsin
the lower-level network Startingwith a particularinitial state (representing intention),
and followingthe forward dynamics of the whole netwptke network predicted the
vision state and the propdeptive state of eadhext time stefby receiving thevalues
from the currenttime stepfrom the corresponding perceptichannels The prediction
of the propioception state atachnext time step was sent to the PID controller of the
robot in order to generate thappropriatemotor command for each joint motto
achieve the predicted posture of the robdhat nexttime step.

The robotwas trainedo generatdive different task behavioraith an object
under the physical guidance @humantutor as describeith previousexperimentsThe
goal of each task betiar wasto generate a differesequence of behaviprimitivesin
order tomaripulate the objectin different wayssuch as reachinigr the object, moving
the objectup and down (UD), left and right (LR) and faavd and backward (PBBa
specificnumber ofrepetitiors. There was one behavior primitivelapping hands (CL),
which did not invdve with the objectAll five task behaviors statl from the home
position and ened by returningto thatsame positiorfseeFig. 9).
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Fig. 9. A humanoid robot made by Sonytrsined for five behavioral tasks, each of
which is composed of a sequence of behavior primitives.

Thetutor taughttheroboteach ofthesetask behaviorsshanging the loject positiorfive
times(2cm eachpetween the left end and the right endhe task tableexcep for task
5 which did not contairbjectrelated behaviorlt is important to note, herg¢hat no
explicit cues were provided fdhe segmentation ahe tutoredvisuo-proprioceptive
sequences into behavior primitives.
Training of the MTRIN was completeavith 5000iterations of BPTT foeach
of thetutored sequence$his resultedin aroot mean square error of 0.009. Titwdot's
performanceavas tested for all fivéask behavior®y changing the initial object position
five times within the trained rangdt was shown that the robot performed all task
behaviors successfully. Herésuccess means thathe robotcould generatespecific
patterns withirspecific ranges of movement amplitudes i, LR, FB and Cl.for a
specificnumber ofrepetitons without dropping thebject for more detailssee[27].)
It is important to note, also, thttis same learning experiment was repeated five fimes
in each case with similar results obtained with near perfect behavior regeneidtiens
robot failed in aly one trial out of 25 trials by dropping the object while grasping it.
Fig. 10 illustratesrepresentativéask regenerationsshowing thedevelopment
over time of essentialsystemvariables with task2 and tasis representedn the
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left-handand righthandcolumns respectively.
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Fig. 10. Examples of teaching pattesrand generatedpatternsfor task-2 and taskb.
Proprioception and vision trajectorieguring teaching (inthe firstand the second

rows) and duringgeneration(in the third and the forth rows) are shown. The

activation patterns for 60 fast context units and for 20 slow context units are shown in
the 6" and 7" rows, respectively.

Each plot shows targsignals forthe four representative dimensions jfoprioception
and twaodimensional visual informatiorfor object positionduring tutoring, with
correspondingyeneratedutputs and with the activations of 60 fast context units and
20 slow context undt in greyscale representationobking at the activeon dynamics
of the fast contextunits in the lower networkit is clear that their dyamics were
correlated withvisuo-proprioceptivetrajectories.On the other hand, the activation
patterns in the slow context units changed much more slé&nyn this observationa
hypothesiscan be drawn, that sequence of primitive patternrsmbedded in the lower
subnetworkandcharacterized by fast dynamjegas learned in the higher suletwork
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andcharacterized by slow dynamics.

According to thishypothesisandassumedunctional roles of the slowndfast
dynamics in the model netwqrlone would antigate that novel combinations of
primitives would be generated orthy modulatingthe activity of theslow context units.
In order totest this idea, the networlas retrained togeneate additional, novel
behavior sequences which were to be assembledfrom new combinations of
prior-learned primitives. Most importantly, during thiaddiional training, onlythe
connedivity weightsin the highemetworkwereallowed to changenot theones in the
lower and the inpubutputnetworks Theadditional trainingconsisted of two additional
tasks. Intask6, the robot was required to movke object up and down three times
thento move the object left andght three timesandfinally to go back to the home
position In task7, the robot was requiretb move the object backward and faxd
three times, theto touch theobject with one handnd finally to go back to the home
position After the reraining, the robotreproducd the novel behavior sequences
successfully wittgeneralization across object locatigas example robot movie can be
seen in video 2n the supplementary material j87].) Fig. 11 displaysan exampleof
regeneration of th@ovel behavior sequence of ta&kin which we can see that the
visuo-proprioceptive trajectories were perfectigneratecas compared to the teaching
target ones It can be also seen that activation patterns of the fast context units
synchronized with tl perceptual sequengeghereasthose for the slow contéxinits
changd much more slowly, in accordance with the earlier experimental design
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Fig. 11. An example of teaching angeneratedpatterrs for the novel behavior
sequence of task.

In order toexamine the effecten the learning procesd timescalalifferencesbetween
the slow networkand the fastone, the experimenthat included training of the
additional novel sequences wasther extendedn this extension, theiffierencein the
timescales was describedtgrms of the ratio ofz values in the fst and slow context
units as (T /1 ). First, after initially randomizingall the connectivity weights in the
whole networkin each instangeghe basic sequences were trained five timath the
time constant rati¢t /T ) set tofive different valuedrom 1.0 to 14.0and with T fixed
at5.0. Then, he additionbnovel sequences were trained fiimes In these instances,
the connectivity weighterere randomizednly in the higher networkvhile the weights
in other suknetworkswere preserved, andhile the time constant rati¢t /T ) was
adjustedn the same wayin both trainingcases|earning wasterated for 5000 epochs.
As a result the averageoot mean square erra@chievedover five trials for five
different time constant ratsds shownfor bothbasic caseandadditional casin Fig.
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Fig. 12. The averageoot mean square erroover fivetraining trials, eachwith a
different timeconstant rato, is shown for boththe basidearning case and the
additional one.

It can be seen that the learning eri@rthe additionatraining casestarted to increase
significantly when the time constant ratio wastedess than 5.0while the one dr the
basic caseemained almost constarggardless of the time constant ratibwas also
found that the robot could not generate both of the ndeHavior sequences
successfully when those semeces were trainedith time constant rad settings o0f2.0
or 1.0. From these results, it can beferred that the higher network could not
reorganize tb novel primitive sequences simgly adapting the weights in the higher
network because the primitives had not been @&eguin the lowernetwork in a
reusable manner through the basic traimphgsewhen the time constant ratio wag se
too small. This is because two types of memories, one for primitive patterns and the
other forthe sequencingf them cannot be segregated the lower andhe higher
networks in the casef learning under the condition of the small time constant r@tio.
the other handwith larger time constant ratio valyesuch as 5.0 and 14.0, it is
postulated tht the functional hierarchgelf-organized between the twsubnetworks
such that a set of primitive patterstored in the lower network coulie reutilized to
generatehenovel sequences the primitivesin the higher one

It was observed thahe time profiles of the slow context activitiesvere
smooth anduncorrelated with detail profilesither in the visuo-proprioceptive
sequenes or in the fast contexnit activation sequenceélthough te profiles of those
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slow context activities drastically changed as the primitives were shifted from one to
anothey they never showed stepwise changes at the ensnthat primitives were
switched, but rather only showedontinuoussmooth changed#ost importantly,it can
thus be said thathe higheflevel sequencing wasealizednot in terms of discrete
eventlike sequencedut in terms othe continuous flow ofcollective neural activities.
The exact profiles of the slow context activities should be determinedhdy
consolidative learning processes which attempt to fedhpranise between two
potentially conflicting factors One of these factorgs that the slow context unit
activities can change only gradually because of their time constant constrairthe
other is that the prediction output error in the lovestel netwok should be minimized
by adequately modulating the slowontext activities which work asnonlinear
parametes, regulating the lowetevel network dynamics.

The graduallychanging profile in the slow context units seem to contagme
contextualinformation usefulfor counting cycletimesin cyclic patterns awell as for
predictingthe next primitivesto switch When the activities in the slow context units
were slightly perturbetty adding artificialnoises the countingoecame imprecise with
plus or minus 1. However, it was always observed ttiege behaviors were smoothly
connected to the next primitivend thattransitionsto the next primitivenever took
place midway thiough an ongoing primitivéd-or examplein task6, moving theobject
up and dowran incorrect number of repetitionf®(r timesrather than the correttree
times ashad beentaught) smoothly connected to the next primitive of moving the
object to the left and right after locating the object on the floor, even though the cycle
times were counted inaccuratelfhis implies that what we may callfifluid
compositionalityp had beermeveloped via iterativimteractions between the higHewel
neural ¢gnamics and the lower levduring the learning process

D. Learning to Generate Spontaeous Combinations of Primitive Actions

The previous experiment showed how robots can learn to generate a tsesk of
behaviors each of which comprisinggf a deterministic sequential combination of
behavior primitives. Howevergeverday behaviorsof human beings appear to be
spontaneous, thesequences beingot sofully predetermined. Considethe actions
involved n makingpastaas an example. Aftggouring water into a pognd puting it

on a gas stove, | can eithegtlt the gas stover put aspoonfulof salt in the water. Qr
very often | completelyforget to addsalt during the preparation of the pastaly to
rememberthe saltlater when | take the firdbite. As this example illustratesome
segment®f action sequences are determiniséicd must be done in order to satisfy the
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goal, while others are nondeterministieven optional,and where we might find
spontaneity in action generation.

Psychologist have studied this aspectlafman behavioin terms of statistical
learning. Their bservations on child development as well atult learning have
suggested that chunk structures can be extracted through statistical learning with a
sufficiently large number of perceptuand behavioral experiencpi]-[42]. Here, the
term Achunk structureso dexnchunksa primévese at abl e
andtakes account gbrobabilistic statéransitions between thostunks orprimitives
One important questigrhere is how dynamic neural network models can learn to
generatdispontaneous behaviarby extractingthe aforementionedtatistical structuie
for chunking And furthermore, what is the origin of th@obability undelying the
statistical structurebserved in spontaneous behaviors?

For the purpose of investigag thesequestiors, we conducted the following
robot learning experimeénnvolving statistical learning of primitiveaction transition
sequenceg29]. The same humanoid robotwith the same settinglescribed in the
previous sectiorwas trained to intate object manipulatiobehaviorsthough diect
guidance by autor. The target task to bé&utored containedstochastic transitions
betwee primitive actionsas shown in Fig. 13

right to left (50%)

center to right (50%) left to center (50%)

center to left (50%)

left to right (50%)

right to center (50%)

Fig. 13. Task of successive stochastic transitions of action primitives tutored for a
Sonymade humanoid robot. Each action primitive stamsth both hands
approachinga green object, grasping and moving the object to two alternative
possible positions with 50%robability for each, releasing the object, arfchally ends
with the hands gong back to the home position.

A coloredobject was placed on tblein one of three positions (left, center, right),
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and thetutor repeateda primitive action proceedingas follows. Beginning from the
home positionpoth hands approachdide objectfor graspingthen grasped the object.
Then, the object was movetb one oftwo possible positionsvith equal probability
(50%). After releasing the objecthe hands returnet the home positionThe tutoring
of the actionwas performed continuouslyith eachnext object position determined
randomly, andno explicit cues were provided for segmenting the sequerdes.
tutoring process generated 24 training sequences, each igh vdonsisted of 20
transitions of printive actions, amounting to roughB500 time steps of continuous
visuo-proprioceptive sequenceslsing the same scheme described in the previous
section, this experiment used these training sequences fineoffraining of the
MTRNN. The MTRNN consistedf a higherlevel networkcontaining30 context units
(tf  p 1 alowerlevel network containing 30 context unity ( ¢ 1, and an
input-output network containing 16 gated modulartwerks with each of which
comprisedf 10 neuralnits (t ¢ (for furtherdetails sed29]).

After thetraining of the networkwe testedthe robot forits ability to imitate
eachtutored sequenceBeginning withthe networksetwith the acquired initial state,
the trained primitive action sequenaamsisting of sevat primitive action transitions
were reproduced exactly during the initial periddowever, generatedequences
gradually startedb deviatefrom the learned oneblewly generated sequencesviating
from the learned ones were aperigdiith various sequential combinations of moving
the objet to left, center or right beingbserved Statistical analysis conducted on the
transition sequences generated over longer pe(Riiflstransitions o&ction primitives)
showed that th@robability of transitoning to one of two possible alternatives wias
the range of10% to 60%for eachposition approximatinghat ofthe tutored sequences
An example movidor demonstrating the corresponding robot behawarsbe seen in
video3in the supplementary materi{&l7].

In order tomore rigorouslyexaminethe caability of the model network to
extractstochastic structures hidden in thiored sequencese peformed analyse on
the lookahead prediction sequences generated by the model netioikg its
closedloop operation whilerepeating the training of the network unddifferent
conditions. In the closelbop operation, long sequences of leakead prediction for
the visuo-proprioceptive state in terms fnotor imagerg can be generated by feeding
the current prediction outputs to the next inputs without using the actual sensory inputs,
asdescriled previouslyFig. 14showsan example of the closddop generatiorby the
prior trained networkin which the neural activation sequences in units with different
timescaleson different network levels and the associatedvisuo-proprioceptive
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sequencgxan be seen.

Primitive
sequence A

Vision

Proprio.

Fast
context
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0 Step 1000
Fig. 14. Forward dynamics generated by the clodedp operation ofa trained
network showinga time series of printive action labels (R, C and L) in terms of
vision (relative object position in two dimensions), proprioception (two representative
dimensons), and activities of 30 fast context units and 30 slow context units with

grayscale plots.

This figure demonstrates thatural activities inhe lower-level network andn the
higherlevel networkdevelogd with their intrinsic timescale dyndos, ashad been
observedn the previous experiment using the MTRNN.

Next, ananalysis wasconductedfor casesintroducing different transition
probabilifes in the tutoring. For this purpose, the tutoring sequences were newly
generated by changirte transition probabity (the probability of selecting an action
of fiRight to Centab in Fig. 14 from the original50% to 25% andto 12.5% The
number ofgeneratedtutoring sequencesemainedthe same asluring the previous
tutoring onefor each transition probability case. Thetwork training was repeated 100
times, utilizing different randonsettings for the initial weights ieach caseThen the
transition probaitity was measured for theisuo-proprioceptive sequences produced
via the closedoop operation of each trained netwoRig. 15shows the mean dhe
transition probability obtained from the results of 100 trials of learningdch ofthe
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aforementioned thregrobabilities It can be seethatthe transition probabilities of the
reproduced actionmostly followed the target ones

Fig. 15. The mearprobability of selecting the actioriRight to Centeé of 100 trained
networks for three different probabilities (12.5%, 25% and 50%) during the tutoring
session.

This result imples that the employed model could learn to extract thestatistical
structuresof chunkingwith their corresponding tresition probabilities from theutored
sequences.

Next, we investigatd the main issuenamelythe origin of indeterminacy or
spontaneity in choosing action primitiveln order to avoid theossibility that the
stochastic property was originatinffom miscellaneousreal world noisesources,
including sensory noise and mechanical noike,intrinsic dynamics of the network
model attained by the closéabp operation was atyzed again For purpose of
examinng the dynamiaharacteristics of the netwodkiantitatively a dynamic measure
known as the Lyapunov exponent was calculated for the activity of eaeatesubrk
during generation of motor imager positive or negative.yapunov exponentalue
indicatesthe rate of divergencer convergenceof adjaent trajectories in a given
dynamic sgtem respectively A positive value forthe maximum Lyapunov exponent
(MLE) as he largest componemtdicates that chaos is generaiadthe systemWe
computedhe MLESs for the higher and the lowetlevel networkgsee APENDIXA for
the method.)The computation was repeatd®0 times with different connectivity
weights developed from thaitial weightsrandomized with different seed&it under
the same learning conditionBhe computation results showed that averageMLE for
100 trials of training wa®.000533 for the highdevel network and0.007424for the
lower-level network. It was also shown thée probabilityof showinga positive value
of the MLE was94% for the highetevel network and 0% for the Wer-level network.

32



