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Abstract

We consider the modeling process of a \biological" agent by combining the concepts

of neuroinformatics and deterministic chaos. We assume that an agent observes a target

process as a stochastic symbolic process, which is restricted by grammatical constraints.

Our main hypothesis is that an agent would learn the target model by reconstructing an

equivalent quasi-stochastic process on its deterministic neural dynamics. We employed

a recurrent neural network (RNN), which is regarded as an adjustable deterministic dy-

namical system. Then, we conducted an experiment to observe how the RNN learns to

reconstruct the target process, represented by a stochastic �nite state machine in the

simulation. The result revealed the capability of the RNN to evolve, by means of learn-

ing, toward chaos which is able to mimic a target's stochastic process. We precisely

analyzed the evolutionary process as well as the internal representation of the obtained

neural dynamics. This analysis enabled us to clarify an interesting mechanism of the

self-organization of chaos by means of neural learning, and also showed how grammar can

be embedded into the evolved deterministic chaos.
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1 Introduction

An intelligent agent should have the ability to build a dynamical model of its own environment.

The agent, using the model, can conduct lookahead prediction and planning. The essential

question raised here is how an agent can acquire the model.

Crutch�eld (1991) presented an interesting concept for the modeling process, based on the

dynamical system's view. In his formulation, the target process to be modeled is viewed as

stochastic system de�ned on real numbers. An agent observes the target process through

a measuring apparatus that o�ers �nite measuring resolution. The measuring resolution is

usually determined by the modeler's bias toward what is worth observing against noise. If

noise a�ects the target process or the measuring process substantially, any attempt at high

resolution measurement becomes meaningless since precise information relating to the original

process has already been lost. The measuring apparatus acts as a transducer that samples the

process value and maps it onto a �nite symbol. Therefore, it can be said that the modeler

observes the original dynamical process as a stochastic symbolic process. Crutch�eld (1991)

assumed such a stochastic symbolic process to be internally preserving stable grammatical

constraints. He formulated an algorithm by which the modeler can extract essential grammar,

in the form of statistical �nite state machine (SFSM), from the observed sequence.

In this paper, we present another interpretation of the above modeling process that would

be more biologically plausible (see Figure 1).

{ Fig. 1 {

We assume that an agent possesses an internal neural system that is , mathematically, a deter-

ministic dynamical system with an adjustable parameter set. In learning the target process, its

dynamical structure is modulated, by means of weight adjustment, such that its time evolution

mimics the original process. If we adopt Crutch�eld's view of \quantization by observation", we

face a basic problem: how a deterministic dynamical system can mimic the observed stochastic

symbolic process. The answer can be found in a mathematical framework of symbolic dynamics

(an excellent introduction can be found in (Hao Bai-lin, 1989)), which we briey review below.

Symbolic dynamics can be de�ned for a given dynamical system based on real numbers

with �nite divisions of its state space, a unique symbol being assigned to each cell. The

trajectory in the original state space is transformed into symbolic sequences by this de�nition.

If the original dynamical system is characterized as a �xed point or limit cycling dynamics, the

symbolic dynamics also converge to one symbol or to a periodic sequence of symbols. If the

original dynamical system is chaotic (i.e. the trajectory is expansive in certain directions), the

symbolic dynamics could be ergodistic, generating stochasticity. Such a stochastic symbolic

process is subject to grammatical constraint, and it eventually composes language. It was

shown that a simple parameterized unimodal map such as "logistic map" can generate varieties

of language (including di�erent classes of language) (Crutch�eld and Young, 1989; Friedman

1991).

This notion of symbolic dynamics leads us to a hypothetical answer: the internal neural

system evolves, by means of learning, toward a chaotic regime which is able to mimic a gram-

matically constrained stochastic symbolic process. We will conduct a simple experiment to test

this hypothesis in the following. We employ a recurrent neural network (RNN) (Jordan, 1986;

Pineda, 1987; Elman, 1990; Sato, 1990) that is regarded as a deterministic dynamical system.

The main contrast of our research from previous one on RNN learning of grammar (Elman,
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1990; Pollack, 1991; Giles, Sun, Chen and Lee, 1992) is that we discuss capability of RNN as a

generator rather than a recognizer of language. We focuss on an RNN with self-feedback loop

without inputs which realizes an autonomous dynamical system. Figure 2 shows illustrates our

experiment. We assumed that an SFSM represents an observed process.

{ Fig. 2 {

The sequence generated in the SFSM is fed to the RNN as example training data, after which

the RNN adjusts the connective weights, in an attempt to mimic the sequence. This is a search

process, on the neural manifold spanned across weight space, to �nd an appropriate dynamical

function that can generate a speci�ed language. We will examine the evolutional process of the

RNN's internal dynamics, and investigate how grammatical constraint can be embedded into

its internal representation.

2 Recurrent Network

The RNN employed in this study is a three-layered feed-forward network with state feed-back

loops. It has an output unit but no input units (see Figure 3).

{ Fig. 3 {

The dynamics of the RNN is given by the recurrent application of a map which is parameterized

by the connective weight W , realizing an autonomous dynamics.

The state vector of current time, St, in the input layer is transformed to that of the next

time, St+1, in the output layer,

St+1 = Fs(St;W ) (1)

Output Ot+1 is also mapped from the St, but by a di�erent function.

Ot+1 = Fo(St;W ) (2)

Note that St and Ot are a vector and a scalar of a real number. Fs and Fo can be embodied by

means of a neural activation function:
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where sj;t is the jth unit of the state vector in the input layer, si;t+1 is the ith unit of the state

vector in the output layer, hi is the ith unit in the hidden layer vector and ot+1 is the output.
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output unit respectively. f() is a standard sigmoid function.

The objective of learning is to �nd an optimal value of W that minimizes the energy E

de�ned as the learning error between two sequences: the target sequence yP and the output

sequence oP over the period P . With op = FoFs
p�1(s0) the energy function is,
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2 (4)
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The optimal value of W , minimizing E, can be obtained through the iterative calculation

of back-propagation through time (BPTT) (Rumelhart, Hinton and Williams, 1986). In this

calculation the recurrent network is transformed into a cascaded feed-forward network without

loops by duplicating the original three-layered network in the time direction. The generalized

delta rule (Rumelhart, Hinton and Williams, 1986) is applied to the cascaded network to �nd

the weight update vector at each sequence pattern l as �lwij, which is:

�lwij = �i;laj;l (5)

where aj;l is the output of the jth unit of the cascaded network. For the output unit, �i;l is

calculated as

�i;l = (yi;l � ol)f
0

i(neto;l) (6)

where f 0

i(neto;l) is the derivative of the sigmoid function with an input summation of the output

unit. For hidden units for which there are no teaching signals, �i;l is calculated recursively as

the error signals back-propagate through the connections to the unit:

�i;l = �f 0i(neti;l)
X
k

�k;lwi;k (7)

where � is a decay coe�cient that is set to a value between 0.0 and 1.0. The details of the role

of � will be explained later. The update weight vector for all sequences �wij is obtained as a

summation of (5).

To accelerate the learning speed, a momentum term is included in the update as

�wij(n+ 1) = ��i;laj;l + ��wij(n) (8)

where n indexes the iteration time in the learning, and � and � are the constants of the learning

rate and the momentum, respectively.

3 Procedure

This section describes the procedure of the experiment.

3.1 Target process

An SFSM, as shown in Figure 4 was assumed as the target process to learn.

{ Fig. 4 {

This process repeats a basic sequence: (1, 0, 1/0). The generation of \1" or \0" followed by

\10" is stochastically determined with even probability.

3.2 Training procedure

In the following paragraphs, we describe the speci�c methodologies and conditions applied to

RNN training, which have not been presented in previous reviews of the generalized method-

ology of recurrent learning.
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The employed RNN was three-layered, with three state units in the bottom layer, four

hidden units in the middle layer, and one output unit and three state units in the upper layer.

In preparing the training data, a �nite sequence of symbols is sampled from the source

process. The sequence is divided into a set of window segments, each of equal length. The

network is trained with this set of window segments in a parallel manner. The necessity for

this segmentation arises from a typical characteristic of chaos: initial sensitivity. If chaos is

dominant in the reconstructed dynamics, the learning of a sequence exceeding a certain time

frame cannot converge because the output and the target sequences start to diverge in the time

frame even if optimal connective weights are assigned. This implies that the length of each

learning sequence should be set to a value shorter than this time frame. In our experiment, the

window length is heuristically determined to be 12. The length of the total sample sequence is

204.

The error at each time in the window is back-propagated as a delta value through the state

units of the cascaded network. Since the delta value could become unexpectedly large once

accumulated to the bottom of the cascaded network, an adequate decay coe�cient � of ( 7)

for back-propagating the delta should be set. In the delta computation of ( 7), � is set to 0.8

when delta is computed for state units, and to 1.0 otherwise. The delta decays every time it is

back-propagated to the state units.

The training process of the network should determine, in addition to the connective weights

common to all segments, the optimal initial state for each window segment which minimizes

the learning error. The ith unit of the initial state vector s0;i is iteratively calculated by the

steepest descent utilizing � information at the initial level as:

�s0;i(n+ 1) = ��0;i + ��s0;i(n) (9)

This iterative search of the initial state is conducted for each window segment, simultaneously

with that for the connective weights.

The training procedure employs parameter control for the learning rate �. Our tests revealed

that learning proceeds through a precise structure of bifurcation and that, if the learning speed

is too high, the structure is destroyed with showing a sudden increase in the error. Thus we

introduced a heuristic control scheme in which the learning rate � is adjusted according to the

learning error:

� = �E (10)

By this, the learning speed is polynominally reduced as the learning error E becomes smaller.

4 Simulation Results

4.1 Evolutionary Process in Learning

The computational experiment was conducted. Parameter settings were  = 1:5, � = 10�5,

and � = 0:93. The initial values of connective weights and biases were randomly set to between

-1.0 and 1.0. The exact values are listed in the Appendix.

In our experiment, learning was terminated after 20000 iterations, at which point the learn-

ing process was nearly saturated. Figure 5 shows the time histories of the mean square learning

error, the output trace of the internal dynamics, and the largest Lyapunov exponent.
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{ Fig. 5 {

Here, the output is a set of steady state solutions of oi of (3) at each temporal point in the

evolution, assuming that the connective weights evolves negligibly slowly. We noted that the

internal dynamics evolve toward complexity through bifurcation. The largest Lyapunov expo-

nent was negative at the beginning of learning, later becoming positive as learning proceeded.

This implies that the internal dynamics are evolving toward chaos.

Let us examine the evolution process more precisely. The dynamics of a �xed point (near

0.5) continue through 1570 steps. Then, sudden tri-furcation takes place and limit cycling with

a periodicity of three starts. The strategy that emerges here is to mimic the target process

by constructing a sequence such as "1.0, 0.0, 0.5" rather than one of all "0.5", which results

in the error being dramatically reduced. This limit cycling structure continues through 11950

steps, after which it starts to bifurcate, generating a limit cycling having a longer period. With

a representation of symbolic dynamics in which an output of less than 0.5 is assigned to "0"

and that equal or larger than 0.5 is assigned to "1", the sequence is represented by cycling

such as "(101)(100)- - -". Chaos emerges from the 15102 steps. The Lyapunov exponent

becomes positive at this point. Figures 6 (a) and (b) show the steady state symbolic sequences

immediately before and at the onset of chaos.

{ Fig. 6 {

The symbol sequences sampled after transient periods are represented by white (denoting 0)

and black (denoting 1) squares from left to right in each row, downwards. The sequences

existing immediately before the onset of chaos exhibit cycling with a periodicity of 36. That

of the onset of chaos exhibits intermittent chaos having disorder bursts akin to noise on the

basic cycling having a periodicity of 12. Although the observed sequence at the onset of chaos

is grammatically correct, it seemed extremely biased in that "0" or "1" at the disorder is

determined by a complex mechanism depending on long-past sequences. (c) shows the symbol

sequences at 16600 steps in which the generation of the sequence becomes very close to that of

the target process. The stochastic part of "0" or "1" comes at every third period. The symbol

sequence at 20000 steps, shown in (d), seems quite similar.

In our experiment, learning proceeded with the evolution of the internal dynamics from a

�xed point, through limit cycling, and �nally to chaos. A similar evolutionary process was

observed in the study (Sato, Murakami and Joe, 1990) of the direct learning of chaos (an

RNN is trained with a real number time series, generated by a Lorentz attractor, to learn its

dynamics.) This type of evolution, from order to disorder, seems essential to learning chaotic

dynamics.

4.2 Internal representation

In this section, we focus on the internal dynamics obtained at the end of learning, and investigate

how the target SFSM is represented internally by means of evolved attractor dynamics.

Since the RNN has three hidden state units, the dimensionality of the internal state space

is three. We graphically examined how the internal state evolves at each time step in this state

space (the connective weights are �xed with that obtained in the end of learning). Figure 7 (a)

shows the trajectory.

{ Fig. 7 {
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The transitions from current time to next time are indicated by connected lines, shown as a

2-D projection of the original 3-D internal state space. It appears that the trajectory goes

around three regions periodically. This is not, however, limit cycling since each region has a

certain width. (If it were limit cycling having a period of three, the trajectory would simply be

a triangle connecting three points.)

To clarify this point, we closely examined the structure of this attractor. Figure 7 (b) shows

the projection of the obtained attractor into two-dimensional space, which reveals the existence

of three segmented curved lines. This implies the interesting fact that the dynamics of attractor

is self-organized as a cycle of three one-dimensional maps. We tag the curve segments which

are mapped onto each other by R1, R2, R3, R3 and parameterize each curve segment by the

interval [0,1] in the direction given by the arrows in the �gure. (Note that R2 is a hairpin curve

with no crossing.) We investigated how each region is mapped to another, and also how it is

mapped to the output.

Figure 8 (a) shows the obtained mapping from one region to the other. (The length of each

region is uni�ed as 1.0.)

{ Fig. 8 {

R1 is mapped to R2, R2 is mapped to R3 and R3 is mapped back to R1. An important point

to note is that mapping from R2 to R3 is surjection while all others are bijection. (b) shows

the mapping from each region to the output. R1 is mapped throughout to 1.0, R2 does to 0.0,

and R3 does continuously from 0.0 to 1.0.

Now, we can explain the mechanism by which the target grammar is embedded into the

internal dynamics. Figure 9 shows the illustrative schematics relating the internal dynamics

and the target SFSM.

{ Fig. 9 {

It can be clearly seen that R1 corresponds to state 1 of the target SFSM, R2 corresponds to

that of state 2 and R3 to that of state 3. So, how can we explain the stochasticity assumed

in state 3 ? The answer lies in the mapping by surjection from R2 to R3, in which R2 is

stretched, folded in the middle then mapped to R3. It is well known that the in�nite repetition

of stretching and folding ultimately generates chaos (explained in any introductory text on

dynamical systems, such as (Wiggins, 1990)). The time evolution of the internal state becomes

unpredictable after a certain time frame in terms of initial sensitivity. Therefore, the output of

"0" or "1", which depends solely on the internal state value on R3, becomes stochastic.

5 Summary

We presented a hypothetical model that explains how a biological agent learns target models

by observation. We assumed that an agent observes a target process as a stochastic symbolic

process, and that it would reconstruct the observed process on its internal deterministic neural

dynamics by adjusting its weight parameter set. We assumed RNN for this adjustable deter-

ministic dynamical system, and investigated its learning by experiment. The result revealed

the capability of RNN to evolve, by means of learning, toward chaos which is able to mimic a

target's stochastic process. Analysis of the internal representation clari�ed how the grammar,

constraining the target process, was embedded into the evolved deterministic chaos.
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The study left us further problems to consider. Our experiment exhibited slow convergence

of the learning process. Repeated simulations with the same learning parameter, but with

di�erent initial weight conditions, showed the probability of convergence to be about half. It

was, however, observed that quick learning with a larger � in (10) results in a worse convergence

probability. The learning process becomes unstable, accompanied by bursts in the mean square

error in such learning. Although it is not yet clear whether this slow learning is essential to a

successful convergence, Sato's research (Sato, Murakami, and Joe, 1990) into direct learning of

chaos also revealed slow convergence of the same order. A formal analysis of learning chaos is

expected to reveal a qualitative di�erences from learning other dynamics such as �xed point or

limit cycling.

An experiment with other simple SFSMs exhibited similar evolution toward chaos in suc-

cessful learning. However it was observed that various internal representations, having di�erent

dimensionality, were obtained according to the learning target as well as the initial weight con-

ditions. The clari�cation of the correspondence between the type of grammar to be learned

and topology of attractor to be self-organized is an open problem.

We have not conducted any experiments to learn upper classes of grammar (i.e. equivalent

to in�nite state machine). Recent researches on \computation on real numbers" (Crutch�eld,

1989; Friedman, 1991) infer that neural function corresponding to such grammar could be

realized only in a critical region on a neural weight manifold. Our observation of the onset of

chaos in Figure 6 (b) might be an example. To solve this problem, we need to study relationship

between neural informatics and complex dynamics in a more qualitative manner.

Appendix

A Initial weights

The initial connective weights and biases are:

wh
ij =

0
BBBB@

�0:345557 0:896520 0:537531

�0:876996 �0:466396 0:173198

0:406974 �0:520104 �0:318611

�0:512321 �0:728994 �0:544173

1
CCCCA

bhi = (�0:540455 0:437992 � 0:926643 0:116201)

ws
ij =

0
B@
�0:496082 �0:683896 0:232361 0:635133

�0:179600 �0:138874 �0:432633 0:026872

�0:893048 �0:660220 0:037103 �0:142628

1
CA

bsi = (0:298294 0:563765 � 0:546093)

wo
ij = (�0:048378 0:978033 0:083583 � 0:113919)

boi = (�0:621886)
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